Storage Coefficients/Specific Yield
Storage Coefficient/Storativity S: storage coefficient or storativity: The amount of water stored or released per unit area of aquifer given unit head change Ss: specific storage –The amount of water stored or released per unit volume of aquifer given unit head change –S = Ss b, where b is the aquifer thickness Storage change is accomplished via compression of the aquifer matrix and the fluid. Fluid compressibility Pa -1 while typical (sand) aquifer compressibility is Pa -1 Typical values of S (dimensionless) are – Measuring storativity: derived from observations of multi-well tests GEOS 4310/5310 Lecture Notes, Fall 2002 Dr. T. Brikowski, UTD
Storage Coefficient/Storativity
Specific Yield Determination of Specific Yield for the Biscayne Aquifer with a Canal-Drawdown Test by Carl H. Bolster, David P. Genereux, and James E. Saiers Abstract Data from a large-scale canal-drawdown test were used to estimate the specific yield (sy) of the Biscayne Aquifer, an unconfined limestone aquifer in southeast Florida. The drawdown test involved dropping the water level in a canal by about 30 cm and monitoring the response of hydraulic head in the surrounding aquifer. Specific yield was determined by analyzing data from the unsteady portion of the drawdown test using an analytical stream-aquifer interaction model (Zlotnik and Huang 1999). Specific yield values computed from drawdown at individual piezometers ranged from to 0.57, most likely indicating heterogeneity of specific yield within the aquifer (small-scale variation in hydraulic conductivity may also have contributed to the differences in Sy among piezometers). A value of 0.15 (our best estimate) was computed based on all drawdown data from all piezometers. We incorporated our best estimate of specific yield into a large-scale two-dimensional numerical MODFLOW-based ground water flow model and made predictions of head during a 183-day period at four wells located 337 to 2546 m from the canal. We found good agreement between observed and predicted heads, indicating our estimate of specific yield is representative of the large portion of the Biscayne Aquifer studied here. This work represents a practical and novel approach to the determination of a key hydrogeological parameter (the storage parameter needed for simulation and calculation of transient unconfined ground water flow), at a large spatial scale (a common scale for water resource modeling), for a highly transmissive limestone aquifer (in which execution of a traditional pump test would be impractical and would likely yield ambiguous results). … Ground Water Abstracts Volume 39 Number 5 September/October 2001/