KITPC Program on Neutrino Physics Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos Yue-Liang Wu Kavli Institute for Theoretical Physics China (KITPC) Institute of Theoretical Physics Chinese Academy of Sciences
78 Years Old Neutrino 1930 Pauli (30 years old) : Neutrino with s=1/2 、 NWIP 、 m < m_e To solve energy conservation problem and spin- statistical problem involved in decay 1933 Fermi: H_3 He_3 + e + anti T.D.Lee & C.N.Yang: Parity Non-conservation (NP) C.S. Wu : Experimental Test 1957 Landau, Lee & Yang, Salam Two Component Theory of Massless Neutrino m_ =0, Maximal Parity Violation 1958 Feynman-Gell-Mann, Marshak-Sudarshan V-A Theory 1967 GWS Standard Model : SU(2)_L x U(1) (NP) Based on Massless Neutrinos
1957 Pontecorvo Massive neutrinos 、 Neutrino Mixing & Oscillations _e anti- _e 1957 R.Davis: Reactor Experiment anti- + Cl_37 e + Ar_ Lederman, Schwartz & Steinberge Observed _ at Brookhaven (NP) 1962 MNS – Maki-Nakagawa-Sakata Lepton Mixing Angle: 1967 Pontecorvo _e _ Solar Neutrino Puzzle: ½
1967 R. Davis Solar Neutrino Experiment (NP) 1969 Gribov & Pontecorvo Majorana-type Neutrino Mixing 1976 Bilenky & Pontecorvo Dirac-type Neutrino Mixing 1978 L. Wolfenstein; 1986 S.P. Mikheyev and A. Yu. Smirnov Matter Effects of Neutrino Oscillations (MSW) 1979 See-Saw Mechanism & GUTs 1994 : ‘1 , 3 , 5 ’ - Massive , ‘ 2 , 4 , 6 ’ - Massless , 7 - No think Super-Kamiokande Experiment Evidence of Massive Neutrinos & Neutrino Oscillations Answer Question: Massive or Massless?
Unknown Questions: Neutrinos are Dirac or Majorana ? Absolute Values of Neutrino Masses ? Hierarchy or Degeneracy ? CP Violation in Lepton-Neutrino Sector ? How Many Neutrinos , Sterile Neutrinos ? Leptogenesis and Matter-Antimatter Asymmetry ? Rules of Neutrino in Astrophysics and Cosmology ?
Theoretical Questions Why neutrino masses are so small Why neutrino mixings are so large in comparison with quark mixings 23 is exactly maximal ? 13 ? , U e3 0 ? Mass hierarchy m 31 2 > 0 ? m 31 2 < 0 ?
Flavor changing at 5.3 arXiv:nucl-ex/ Electron neutrino generated from Sun Solar Neutrino: SNO
Oscillation parameters : arXiv: A scaled reactor spectrum without distortions from neutrino oscillation is excluded at more than 5σ! Reactor neutrino: KamLAND
Atmosphere Neutrino: Super-K Oscillation parameters :
J. Valle et al. hep-ph/ , updated at Sep 2007 Solar : Super-K, SNO Atmosphere : Super-K Reactor:KamLAND, CHOOZ Accelerator:K2K , MINOS General Formalism : Neutrino Oscillation
1. Dirac / Majorana Neutrinoless Double Beta Decay 2. Mass scale: m 1 Neutrinoless Double Beta Decay, Single Beta Decay, Cosmology 3. Sterile neutrinos, LSND? Excludes at 98% CL two- neutrino appearance oscillations as an explanation of the LSND anomaly. arXiv: MiniBooNE (3+1): inconsistency at the level of 4σ. (3+2),(3+3): severe tension at the level of more than 3σ. arXiv: Issues in Neutrino Physics
2. Single Beta Decay 3. Neutrinoless Double Beta Decay 1. Cosmology (CMB+LSS): Planck: eV KATRIN: 0.2 eV CUORE: eV Strumia-Vissani arXiv:hep-ph/ Neutrino Masses
3σ arXiv:hep-ex/ Kam-Biu Luk, Jan Int'l Symp on Neutrino Physics and Neutrino Cosmology Global fits:
N Fukugita & Yanagida (1986): Leptogenesis Mechanism Type II? Type III? Seesaw Mechanism
S or A may be Dark Matter! R. Barbieri, L. Hall and V.S. Rychkov, PRD 74, , 2007 E. Ma, PRD 73, , loop generation of neutrino masses: L.M. Krauss, S. Nasri and M. Trodden, PRD 67, , 2003 Right-handed neutrino as Dark Matter! Other Mechanism for Neutrino Masses Two Higgs doublets Model:
Tri-Bimaximal Mixing: (Harrison,Perkins and Scott) Friedberg-Lee Symmetry: Invariant under Friedberg-Lee symmetry: hep-ph/ z a space-time independent constant element of the Grassmann algebra Some papers : Xing, Zhang, Zhou, PLB641 Luo, Xing, PLB 646 C.S. Huang, T.J. Li, W. Liao and S.H. Zhu, arXiv: Family Symmetry
F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. {\bf B 530}, 167 (2002) Z.-Z. Xing, Phys. Lett. {\bf B533}, 85(2002). P. F. Harrison and W.G. Scott, Phys. Lett. {\bf B535},163(2002). P.F. Harrison and W. G. Scott, Phys. Lett. {\bf B557},76(2003). X. G. He and A. Zee, Phys. Lett. {\bf B560}, 87(2003). C.I. Low and R. R. Volkas, Phys. Rev. {\bf D68}, (2003). E. Ma, Phys. Rev. {\bf D70}, R(2004); E.Ma, hep-ph/ G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B720}, 64(2005); E. Ma, Phys. Rev. D72, (2005).; E. Ma, Mod.\ Phys.\ Lett.\ A 20, 2601 (2005) A. Zee, Phys. Lett. {\bf B630}, 58 (2005). E. Ma, Phys.\ Rev.\ D {\bf 73}, (2006). G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B741}, 215(2006). W. Grimus and L. Lavoura, {\bf JHEP}, 0601:018(2006). J.E. Kim and J.-C. Park, {\bf JHEP} 0605:017(2006). N. Singh, M. Rajkhowa and A. Borach, hep-ph/ R. Mohapatra, S. Naris and Y.-H. Yu, Phys.Lett. {\bf B639} 318 (2006). P. Kovtun and A. Zee, Phys.Lett. {\bf B640} (2006) 37. N. Haba, A. Watanabe and K. Yoshioka, Phys.Rev.Lett. 97 (2006) X.G. He, Y.Y. Keum and R. Volkas, {\bf JHEP}, 0604:039(2006). Varizelas, S.-F. King and G.G. Ross, Phys.Lett. B644 (2007) 153. R. Friedberg and T. D. Lee, arXiv:hep-ph/ ; arXiv:hep-ph/ B.Hu, F. Wu and Y.L. Wu, Phys.Rev. {\bf D75} (2007).
SO(3) Gauge Model Exact Discrete symmetry Tri-bimaximal with 13 = 0 Experimental Data (99%) Gauge Symmetry has been well tested
Why SO(3) Gauge Model? YLW arXiv: , PRD 2008 Why lepton sector is so different from quark sector ? Neutrinos are neutral fermions and can be Majorana! Majorana fermions only have real representations They possess orthogonal symmetry Invariant Lagrangian for Yukawa Interactions
Uniqueness of Lagrangian & New Particles Symmetry
SO(3) Expression of Tri-triplet Higgs Bosons In terms of SO(3) representation:
Symmetry as Subgroup of SO(3) Discrete symmetric group: Cyclic permutation group: Coset space : Cyclic permuted form: with i+j-1 mod. 3
Why Local SO(3) Symmetry Fixing Gauge: invariant Lagrangian In terms of SO(3) Representation
Vacuum Structure With the given fixing gauge:
Type-II like (generalized) see-saw mechanism For neutrinos: For charged leptons:
Global U(1) Family Symmetries For Infinite Large Majorana neutrino masses Majorana neutrinos decouple Generating global U(1) family symmetries U(1)_1 x U(1)_2 x U(1)_3 Large but Finite Majorana Neutrino Masses ???
Small Mass and Large Mixing of Neutrinos Approximate global U(1) family symmetries Smallness of neutrino masses and charged lepton mixing Neutrino mixings could be large !!!
Nearly Tri-bimaximal neutrino mixings Neutrino and charged lepton mixings: ≈
Lepton Mixing Matrix and Neutrino Masses CKM-like Lepton mixing: Neutrino Masses Heavy Majorana Masses
Numerical Results 4 Parameters: / / Two inputs: Neutrino masses with given parameter
Considering the hierarchy: One parameter in Vacuum: Interesting case: Two cases for charged lepton mixing:
Numerical results for given parameter
Taking Optimistic Predictions Which can be detected by the future neutrino Experiments, like Daya Bay
Vector-Like Heavy Neutrino and Charged Lepton Masses Taking and It leads to and Taking The lightest vector-like charged lepton mass Which may be detected at LHC/ILC
Summary Smallness of neutrino masses and charged lepton mixing could be understood from approximate global U(1) family symmetries Tri-bimaxiaml neutrino mixing is obtainable from the vacuum structure of SO(3) gauge symmetry 13 is in general non-zero and testable at the experimental sensitivity Some of the vector-like fermions could have masses at electroweak scale and be probed at LHC The mechanism can simply be extended to quark sector for smallness of quark mixing
THANKS THANKS