KITPC Program on Neutrino Physics 2008.9.1-9.21 Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos Yue-Liang Wu Kavli Institute for Theoretical Physics.

Slides:



Advertisements
Similar presentations
Neutrino mass matrix in triplet Higgs Models with A_4 Symmetry Myoung Chu Oh Miami 2008, Dec. 17, 2008 Based on work with Seungwon Baek.
Advertisements

Resonant Leptogenesis In S4 Model Nguyen Thanh Phong Cantho University In cooperation with Prof. CSKim, SKKang and Dr. YHAhn (work in progress)
Non-zero |U e3 | and Quark-Lepton in Discrete Symmetry Y.H.Ahn based on Phys.Rev.D83:076012,2011. working with Hai-Yang Cheng and S.C.Oh 년 8 월 17.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
TeV-scale seesaw with non-negligible left-right neutrino mixings Yukihiro Mimura (National Taiwan University) Based on arXiv: [hep-ph] Collaboration.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
Alpha decay Beta decay Henri Bequerel Pierre and Marie Curie.
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
May 25, 2004Kakizaki, Mitsuru1 Flavor structure in supersymmetric models Kakizaki, Mitsuru (ICRR, University of Tokyo) May 25, 2004 We proposed a new alignment.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
Neutrino Physics - Lecture 1 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
P461 - particles VII1 Glashow-Weinberg-Salam Model EM and weak forces mix…or just EW force. Before mixing Bosons are massless: Group Boson Coupling Quantum.
March 2005 Theme Group 2 Perspectives on Grand Unification in View of Neutrino Mass R. N. Mohapatra University of Maryland.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
Fermion Masses and Unification Steve King University of Southampton.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
A New Theory of Neutrino Oscillations Netta Engelhardt
Current Status of Neutrino Physics 2012 NRF workshop on Flavor and Collider Physics Yonsei University June 8~9, 2012 Sin Kyu Kang (Seoul-Tech )
Seesaw Neutrino mass and U(1) symmetry Rathin Adhikari Centre for Theoretical Physics Jamia Millia Islamia Central University New Delhi : arXiv:
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
Recent Results from Super-Kamiokande and Sudbury Neutrino Observatory R. D. McKeown California Institute of Technology January 17, 2004 IHEP Beijing.
Presented at 24 th Rencontres de Blois, Chateaux, France, 27 May – 1 June 2012.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Probing Majorana Neutrinos (in Rare Decays of Mesons) 11/17/ DBD11 C. S. Kim arXiv: (PRD82,053010,2010) G. Cvetic, C. Dib, S.K. Kang, C.S.
Leptonic CP Violation & Wolfenstein Parametrization For Lepton Mixing in Gauge Family Model Yue-Liang Wu Kavli Institute for Theoretical Physics China.
Symmetry of Fermion Mixing C.S. Lam McGill and UBC, Canada arXiv: (to appear in Phys. Lett)
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Shaving Type-I Seesaw Mechanism with Occam's Razor
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia NO-VE 2006: ``Ultimate.
Ohio State DUSEL Theory Workshop Stuart Raby Underground Detectors Investigating Grand Unification Brookhaven National Lab October 16, 2008.
J. Goodman – January 03 The Solution to the Solar Problem Jordan A. Goodman University of Maryland January 2003 Solar Neutrinos MSW Oscillations Super-K.
Physics of sin 2 2θ 13 ★ What is θ 13 ? ★ What does sin 2 2θ 13 mean? sin 2 2θ 13 measures the oscillation amplitude of reactor neutrinos, e.g., at Daya.
1 Gauge-singlet dark matter in the left-right symmetric model with spontaneous CP violation 郭万磊 中国科学院理论物理研究所 CPS 2008, JiNan , W.L. Guo, L.M.
NEUTRINOS: PAST PRESENT FUTURE Heidi Frank Merritt Fest
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Impact of Neutrino Oscillation Measurements on Theory Hitoshi Murayama NuFact 03 June 10, 2003.
21 Sept The MSM -- Neutrino Masses and Dark matter -- Takehiko Asaka (Tohoku University) TA, S.Blanchet, M.Shaposhnikov [hep-ph/ ] TA, M.Shaposhnikov.
Yukawa and scalar interactions induced by scalar relevant for neutrino masss generation are: Since is assumed to be an exact symmetry of the model has.
A viable RS Model for Quarks and Leptons with T´ Flavor Symmetry Felix Yu University of California, Irvine Pheno 2010 M-C. Chen, K. T. Mahanthappa, FY.
weak decays beta decay ofneutron problem energy and momentum not conserved e n p.
ArXiv: Unitarity Tests of Mixing Matrices The quark sector.
Geometric -Mass Hierarchy & Leptogenesis Zhi-zhong Xing (IHEP, Beijing)  A Conjecture + An Ansatz  Seesaw + Leptogenesis  -Mixing + Baryogenesis Z.Z.X.,
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Duality in Left-Right Symmetric Seesaw Mechanism Michele Frigerio Service de Physique Théorique, CEA/Saclay Rencontres de Physique des Particules March.
Quark-Lepton Complementarity in light of recent T2K & MINOS experiments November 18, 2011 Yonsei University Sin Kyu Kang ( 서울과학기술대학교 )
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Mixing in Quarks and Leptons Xiao-Gang He NTU&SJTU NTU&SJTU 1. Mixing in Quarks and Neutrinos 2. Unitarity Tests of Mixing Matrices 3. Some Recent Hints.
Probing Majorana Neutrinos in the LHC Era YongPyong2010 Seoul National University of Tech. Sin Kyu Kang.
Cosmological matter-antimatter asymmetry & possible CP violation in neutrino oscillations Zhi-zhong Xing (IHEP) International UHE Tau Neutrino Workshop.
THE CONNECTION BETWEEN NEUTRINO EXPERIMENTS AND LEPTOGENESIS Alicia Broncano Berrocal MPI.
Neutrino physics: The future Gabriela Barenboim TAU04.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
A model for large non-standard interactions of neutrinos leading to the LMA-dark solution Yasaman Farzan IPM, Tehran.
Neutrino Physics Now and in Near Future Hisakazu Minakata U. Sao Paulo.
and what we unsuccessfully tried to explain (so far)
Grand Unification and Neutrino Masses
Pontecorvo’s idea An introductory course on neutrino physics (IV)
Neutrino Masses and Flavor Mixing H. Fritzsch.
Non-unitary deviation from the tri-bimaximal mixing and neutrino oscillations Shu Luo The Summer Topical Seminar on Frontier of Particle Physics.
Flavor Mixing of quarks.
Neutrinos and the Evolution
TeV-Scale Leptogenesis and the LHC
SU(3) Gauge Family Model for Neutrino Mixing and Masses
A Study on Loop-Induced Neutrino Masses
高能物理所 张贺 高能物理学会第七届年会 2006年10月29日
Determining the absolute masses of neutrinos
Neutrino Oscillations
Testing Seesaw at LHC 郑亚娟.
Presentation transcript:

KITPC Program on Neutrino Physics Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos Yue-Liang Wu Kavli Institute for Theoretical Physics China (KITPC) Institute of Theoretical Physics Chinese Academy of Sciences

78 Years Old Neutrino 1930 Pauli (30 years old) : Neutrino with s=1/2 、 NWIP 、 m < m_e To solve energy conservation problem and spin- statistical problem involved in  decay 1933 Fermi: H_3  He_3 + e + anti T.D.Lee & C.N.Yang: Parity Non-conservation (NP) C.S. Wu : Experimental Test 1957 Landau, Lee & Yang, Salam Two Component Theory of Massless Neutrino m_ =0, Maximal Parity Violation 1958 Feynman-Gell-Mann, Marshak-Sudarshan V-A Theory 1967 GWS Standard Model : SU(2)_L x U(1) (NP) Based on Massless Neutrinos

1957 Pontecorvo Massive neutrinos 、 Neutrino Mixing & Oscillations _e  anti- _e 1957 R.Davis: Reactor Experiment anti- + Cl_37  e + Ar_ Lederman, Schwartz & Steinberge Observed _  at Brookhaven (NP) 1962 MNS – Maki-Nakagawa-Sakata Lepton Mixing Angle:  1967 Pontecorvo _e  _  Solar Neutrino Puzzle: ½

1967 R. Davis Solar Neutrino Experiment (NP) 1969 Gribov & Pontecorvo Majorana-type Neutrino Mixing 1976 Bilenky & Pontecorvo Dirac-type Neutrino Mixing 1978 L. Wolfenstein; 1986 S.P. Mikheyev and A. Yu. Smirnov Matter Effects of Neutrino Oscillations (MSW) 1979 See-Saw Mechanism & GUTs 1994 : ‘1 , 3 , 5 ’ - Massive , ‘ 2 , 4 , 6 ’ - Massless , 7 - No think Super-Kamiokande Experiment Evidence of Massive Neutrinos & Neutrino Oscillations Answer Question: Massive or Massless?

Unknown Questions:  Neutrinos are Dirac or Majorana ?  Absolute Values of Neutrino Masses ? Hierarchy or Degeneracy ?  CP Violation in Lepton-Neutrino Sector ?  How Many Neutrinos , Sterile Neutrinos ?  Leptogenesis and Matter-Antimatter Asymmetry ?  Rules of Neutrino in Astrophysics and Cosmology ?

Theoretical Questions  Why neutrino masses are so small  Why neutrino mixings are so large in comparison with quark mixings   23 is exactly maximal ?   13 ? , U e3  0 ?  Mass hierarchy  m 31 2 > 0 ?  m 31 2 < 0 ?

Flavor changing at 5.3  arXiv:nucl-ex/ Electron neutrino generated from Sun Solar Neutrino: SNO

Oscillation parameters : arXiv: A scaled reactor spectrum without distortions from neutrino oscillation is excluded at more than 5σ! Reactor neutrino: KamLAND

Atmosphere Neutrino: Super-K Oscillation parameters :

J. Valle et al. hep-ph/ , updated at Sep 2007 Solar : Super-K, SNO Atmosphere : Super-K Reactor:KamLAND, CHOOZ Accelerator:K2K , MINOS General Formalism : Neutrino Oscillation

1. Dirac / Majorana Neutrinoless Double Beta Decay 2. Mass scale: m 1 Neutrinoless Double Beta Decay, Single Beta Decay, Cosmology 3. Sterile neutrinos, LSND? Excludes at 98% CL two- neutrino appearance oscillations as an explanation of the LSND anomaly. arXiv: MiniBooNE (3+1): inconsistency at the level of 4σ. (3+2),(3+3): severe tension at the level of more than 3σ. arXiv: Issues in Neutrino Physics

2. Single Beta Decay 3. Neutrinoless Double Beta Decay 1. Cosmology (CMB+LSS): Planck: eV KATRIN: 0.2 eV CUORE: eV Strumia-Vissani arXiv:hep-ph/ Neutrino Masses

3σ arXiv:hep-ex/ Kam-Biu Luk, Jan Int'l Symp on Neutrino Physics and Neutrino Cosmology Global fits:

 N Fukugita & Yanagida (1986): Leptogenesis Mechanism Type II? Type III? Seesaw Mechanism

S or A may be Dark Matter! R. Barbieri, L. Hall and V.S. Rychkov, PRD 74, , 2007 E. Ma, PRD 73, , loop generation of neutrino masses: L.M. Krauss, S. Nasri and M. Trodden, PRD 67, , 2003 Right-handed neutrino as Dark Matter! Other Mechanism for Neutrino Masses Two Higgs doublets Model:

Tri-Bimaximal Mixing: (Harrison,Perkins and Scott) Friedberg-Lee Symmetry: Invariant under Friedberg-Lee symmetry: hep-ph/ z a space-time independent constant element of the Grassmann algebra Some papers : Xing, Zhang, Zhou, PLB641 Luo, Xing, PLB 646 C.S. Huang, T.J. Li, W. Liao and S.H. Zhu, arXiv: Family Symmetry

F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. {\bf B 530}, 167 (2002) Z.-Z. Xing, Phys. Lett. {\bf B533}, 85(2002). P. F. Harrison and W.G. Scott, Phys. Lett. {\bf B535},163(2002). P.F. Harrison and W. G. Scott, Phys. Lett. {\bf B557},76(2003). X. G. He and A. Zee, Phys. Lett. {\bf B560}, 87(2003). C.I. Low and R. R. Volkas, Phys. Rev. {\bf D68}, (2003). E. Ma, Phys. Rev. {\bf D70}, R(2004); E.Ma, hep-ph/ G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B720}, 64(2005); E. Ma, Phys. Rev. D72, (2005).; E. Ma, Mod.\ Phys.\ Lett.\ A 20, 2601 (2005) A. Zee, Phys. Lett. {\bf B630}, 58 (2005). E. Ma, Phys.\ Rev.\ D {\bf 73}, (2006). G. Altarelli and F. Feruglio, Nucl. Phys. {\bf B741}, 215(2006). W. Grimus and L. Lavoura, {\bf JHEP}, 0601:018(2006). J.E. Kim and J.-C. Park, {\bf JHEP} 0605:017(2006). N. Singh, M. Rajkhowa and A. Borach, hep-ph/ R. Mohapatra, S. Naris and Y.-H. Yu, Phys.Lett. {\bf B639} 318 (2006). P. Kovtun and A. Zee, Phys.Lett. {\bf B640} (2006) 37. N. Haba, A. Watanabe and K. Yoshioka, Phys.Rev.Lett. 97 (2006) X.G. He, Y.Y. Keum and R. Volkas, {\bf JHEP}, 0604:039(2006). Varizelas, S.-F. King and G.G. Ross, Phys.Lett. B644 (2007) 153. R. Friedberg and T. D. Lee, arXiv:hep-ph/ ; arXiv:hep-ph/ B.Hu, F. Wu and Y.L. Wu, Phys.Rev. {\bf D75} (2007).

SO(3) Gauge Model Exact Discrete symmetry  Tri-bimaximal with  13 = 0 Experimental Data (99%) Gauge Symmetry has been well tested

Why SO(3) Gauge Model? YLW arXiv: , PRD 2008  Why lepton sector is so different from quark sector ? Neutrinos are neutral fermions and can be Majorana! Majorana fermions only have real representations They possess orthogonal symmetry  Invariant Lagrangian for Yukawa Interactions

Uniqueness of Lagrangian & New Particles  Symmetry 

SO(3) Expression of Tri-triplet Higgs Bosons In terms of SO(3) representation:

Symmetry as Subgroup of SO(3) Discrete symmetric group: Cyclic permutation group: Coset space : Cyclic permuted form: with i+j-1 mod. 3

Why Local SO(3) Symmetry  Fixing Gauge:  invariant Lagrangian  In terms of SO(3) Representation

Vacuum Structure With the given fixing gauge:

Type-II like (generalized) see-saw mechanism For neutrinos: For charged leptons:

Global U(1) Family Symmetries For Infinite Large Majorana neutrino masses Majorana neutrinos decouple Generating global U(1) family symmetries U(1)_1 x U(1)_2 x U(1)_3  Large but Finite Majorana Neutrino Masses  ???

Small Mass and Large Mixing of Neutrinos Approximate global U(1) family symmetries Smallness of neutrino masses and charged lepton mixing Neutrino mixings could be large !!!

Nearly Tri-bimaximal neutrino mixings Neutrino and charged lepton mixings: ≈

Lepton Mixing Matrix and Neutrino Masses CKM-like Lepton mixing: Neutrino Masses Heavy Majorana Masses

Numerical Results 4 Parameters: / / Two inputs: Neutrino masses with given parameter

Considering the hierarchy: One parameter in Vacuum: Interesting case: Two cases for charged lepton mixing:

Numerical results for given parameter

Taking Optimistic Predictions Which can be detected by the future neutrino Experiments, like Daya Bay

Vector-Like Heavy Neutrino and Charged Lepton Masses Taking and It leads to and Taking The lightest vector-like charged lepton mass Which may be detected at LHC/ILC

Summary  Smallness of neutrino masses and charged lepton mixing could be understood from approximate global U(1) family symmetries  Tri-bimaxiaml neutrino mixing is obtainable from the vacuum structure of SO(3) gauge symmetry   13 is in general non-zero and testable at the experimental sensitivity  Some of the vector-like fermions could have masses at electroweak scale and be probed at LHC  The mechanism can simply be extended to quark sector for smallness of quark mixing

THANKS THANKS