Leptonic CP Violation & Wolfenstein Parametrization For Lepton Mixing in Gauge Family Model Yue-Liang Wu Kavli Institute for Theoretical Physics China.

Slides:



Advertisements
Similar presentations
Neutrino mass matrix in triplet Higgs Models with A_4 Symmetry Myoung Chu Oh Miami 2008, Dec. 17, 2008 Based on work with Seungwon Baek.
Advertisements

Resonant Leptogenesis In S4 Model Nguyen Thanh Phong Cantho University In cooperation with Prof. CSKim, SKKang and Dr. YHAhn (work in progress)
Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Non-zero |U e3 | and Quark-Lepton in Discrete Symmetry Y.H.Ahn based on Phys.Rev.D83:076012,2011. working with Hai-Yang Cheng and S.C.Oh 년 8 월 17.
Probing LFV With m – e Conversion Xiao-Gang He (SJTU&NTU) Enkhbat, Deshpande, Fukuyama, He, Trumura and Tsai, PLB703,562(2011) arXiv: Bo, Tsumura.
The classically conformal B-L extended standard model Yuta Orikasa Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
TeV-scale seesaw with non-negligible left-right neutrino mixings Yukihiro Mimura (National Taiwan University) Based on arXiv: [hep-ph] Collaboration.
Higgs Quadruplet for Type III Seesaw and Implications for → e and −e Conversion Ren Bo Coauther : Koji Tsumura, Xiao - Gang He arXiv:
Leptonic CP Violation in Neutrino Oscillations Shun Zhou KTH Royal Institute of Technology, Stockholm in collaboration with T. Ohlsson & H. Zhang Phys.
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
Neutrino Flavor ratio on Earth and at Astrophysical sources K.-C. Lai, G.-L. Lin, and T. C. Liu, National Chiao Tung university Taiwan INTERNATIONAL SCHOOL.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
1 Unification of Quarks and Leptons or Quark-Lepton Complementarities Bo-Qiang Ma Peking University (PKU) Peking University (PKU) in collaboration with.
November 19, 2005 Sergio Palomares-Ruiz Physics of Atmospheric Neutrinos: Perspectives for the Future Topical Workshop on Physics at Henderson DUSEL Fort.
Fermion Masses and Unification Lecture I Fermion Masses and Mixings Lecture II Unification Lecture III Family Symmetry and Unification Lecture IV SU(3),
Determining the Dirac CP Violation Phase in the PMNS Matrix from Sum Rules Arsenii Titov in collaboration with I. Girardi and S.T. Petcov SISSA and INFN,
Current Status of Neutrino Physics 2012 NRF workshop on Flavor and Collider Physics Yonsei University June 8~9, 2012 Sin Kyu Kang (Seoul-Tech )
Minimal SO(10)×A4 SUSY GUT ABDELHAMID ALBAID In Collaboration with K. S. BABU Oklahoma State University.
Recent Results from Super-Kamiokande and Sudbury Neutrino Observatory R. D. McKeown California Institute of Technology January 17, 2004 IHEP Beijing.
Model building: “The simplest neutrino mass matrix” see Harrison and Scott: Phys. Lett. B594, 324 (2004), hep-ph/ , Phys. Lett. B557, 76 (2003).
Presented at 24 th Rencontres de Blois, Chateaux, France, 27 May – 1 June 2012.
Neutrino oscillation physics II Alberto Gago PUCP CTEQ-FERMILAB School 2012 Lima, Perú - PUCP.
Probing Majorana Neutrinos (in Rare Decays of Mesons) 11/17/ DBD11 C. S. Kim arXiv: (PRD82,053010,2010) G. Cvetic, C. Dib, S.K. Kang, C.S.
KITPC Program on Neutrino Physics Nearly Tri-bimaximal Mixing & Small Masses of Neutrinos Yue-Liang Wu Kavli Institute for Theoretical Physics.
Symmetry of Fermion Mixing C.S. Lam McGill and UBC, Canada arXiv: (to appear in Phys. Lett)
February 23, 2005Neutrino Telescopes, Venice Comparing Solar and KamLAND Data Comparing Solar and KamLAND Data Carlos Pena Garay IAS, Princeton ~
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Shaving Type-I Seesaw Mechanism with Occam's Razor
Anarchy, Neutrinoless double beta decay and Leptogenesis Xiaochuan Lu and Hitoshi Murayama NuFact 2013, Aug 22nd UC Berkeley.
Tests of non-standard neutrino interactions (NSI) Cecilia Lunardini Institute for Nuclear Theory University of Washington, Seattle.
A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia NO-VE 2006: ``Ultimate.
G G G Fermion Masses: Arbitrary L R Quark Masses: Observed: Observed: m(c) : m(t) = m(u):m(c) m(c) : m(t) = m(u):m(c) 1/207 1/207 1/207 1/207.
Open questions in  physics  : mechanism & EFT III. Neutrinos.
Physics of sin 2 2θ 13 ★ What is θ 13 ? ★ What does sin 2 2θ 13 mean? sin 2 2θ 13 measures the oscillation amplitude of reactor neutrinos, e.g., at Daya.
NEUTRINOS: PAST PRESENT FUTURE Heidi Frank Merritt Fest
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Geometric -Mass Hierarchy & Leptogenesis Zhi-zhong Xing (IHEP, Beijing)  A Conjecture + An Ansatz  Seesaw + Leptogenesis  -Mixing + Baryogenesis Z.Z.X.,
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Duality in Left-Right Symmetric Seesaw Mechanism Michele Frigerio Service de Physique Théorique, CEA/Saclay Rencontres de Physique des Particules March.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
Michel Gonin – Ecole Polytechnique – France : SUPER NOVA SN1987A Super-Kamiokande Introduction neutrino oscillations mixing matrices Introduction.
Quark-Lepton Complementarity in light of recent T2K & MINOS experiments November 18, 2011 Yonsei University Sin Kyu Kang ( 서울과학기술대학교 )
SUSY GUT Predictions for Neutrino Oscillation Mu-Chun Chen Brookhaven National Laboratory DUSEL Workshop, January 4-7, 2005 University of Colorado at Boulder.
Mixing in Quarks and Leptons Xiao-Gang He NTU&SJTU NTU&SJTU 1. Mixing in Quarks and Neutrinos 2. Unitarity Tests of Mixing Matrices 3. Some Recent Hints.
Cosmological matter-antimatter asymmetry & possible CP violation in neutrino oscillations Zhi-zhong Xing (IHEP) International UHE Tau Neutrino Workshop.
1/23 Contents Introduction, Motivation The Model - “colored Zee-Babu model” - Summary Lepton Number Violation at the LHC based on ‘M. Kohda, HS, K. Tsumura,
THE CONNECTION BETWEEN NEUTRINO EXPERIMENTS AND LEPTOGENESIS Alicia Broncano Berrocal MPI.
Neutrino physics: The future Gabriela Barenboim TAU04.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
1-2 Mass Degeneration in the Leptonic Sector Hiroyuki ISHIDA (Tohoku University) Collaboration with : Takeshi ARAKI (MISC) Ref ; T. Araki and H.I. arXiv.
A model for large non-standard interactions of neutrinos leading to the LMA-dark solution Yasaman Farzan IPM, Tehran.
Neutrino Physics Now and in Near Future Hisakazu Minakata U. Sao Paulo.
NWG Presentation Heeger, Freedman, Kadel, Luk LBNL, April 11, 2003 Reactor Neutrino Measurement of  13 Searching for Subdominant Oscillations in e  ,
Pontecorvo’s idea An introductory course on neutrino physics (IV)
Neutrino Masses and Flavor Mixing H. Fritzsch.
Neutrino Masses and Flavor Mixing H. Fritzsch LMU Munich.
Leptogenesis beyond the limit of hierarchical heavy neutrino masses
Non-unitary deviation from the tri-bimaximal mixing and neutrino oscillations Shu Luo The Summer Topical Seminar on Frontier of Particle Physics.
Flavor Mixing of quarks.
Neutrinos and the Evolution
SU(3) Gauge Family Model for Neutrino Mixing and Masses
A Study on Loop-Induced Neutrino Masses
高能物理所 张贺 高能物理学会第七届年会 2006年10月29日
Determining the absolute masses of neutrinos
Natural expectations for…
Double beta decay and Leptogenesis
Neutrino Oscillations
Presentation transcript:

Leptonic CP Violation & Wolfenstein Parametrization For Lepton Mixing in Gauge Family Model Yue-Liang Wu Kavli Institute for Theoretical Physics China (KITPC) State Key Laboratory of Theoretical Physics (SKLTP) ITP-CAS University of Chinese Academy of Sciences (UCAS) 海峡两岸 “ 粒子物理和宇宙学 ” 研讨会 CSW-PPC2014

Brief Introduction to Neutrinos 1930 Pauli (30 years old) : Neutrino with s=1/2 、 NWIP 、 m < m_e To solve energy conservation problem and spin- statistical problem involved in  decay 1962 Lederman, Schwartz & Steinberge Observed _  at Brookhaven (NP) 1962 MNS – Maki-Nakagawa-Sakata Lepton Mixing Angle:  1967 R. Davis Solar Neutrino Exp. Neutrino missing puzzle 1967 Pontecorvo _e  _  Solar Neutrino Puzzle: ½ 1969 Gribov & Pontecorvo Majorana-type Neutrino Mixing

See-Saw Mechanism & GUTs 1978 Matter Effects , L. Wolfenstein 1986 S.P. Mikheyev and A. Yu. Smirnov Matter Effects of Neutrino Oscillations (MSW) Solar Neutrino: SNO , Super-K Atmosphere Neutrino: Super-K Reactor Neutrino: KamLAND , CHOOZ Accelerator: K2K , MINOS , T2K Super-Kamiokande Experiment Evidence of Massive Neutrinos & Neutrino Oscillations more experiments for mixing angles & mass-square differences

2012 more precise measurement F. P. An et al. [DAYA-BAY Collaboration], PRL 108, (2012), arXiv: Daya Bay Experiment: RENO Experimental PRL 108, (2012), arXiv: Y. Abe et al. [Double Chooz Collaboration], PRL 108, (2012), arXiv: Double Chooz Experimental

General Formalism : Neutrino Oscillation L-baseline, E-neutrino energy, V- effective matter potential

Global Fitting Based on Experimental Data G.L. Fogli, E. Lisi, A.Marrone, D.Montanino and A. Palazzo, Phys. Rev. D86, (2012); arXiv:

Global Fitting Based on Experimental Data M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, JHEP 1212, 123 (2012); arXiv:

Global Fitting Based on Experimental Data D. V. Forero, M. Tortola, and J. W. F. Valle, Phys. Rev. D86, (2012); arXiv:

Theoretical Prediction Based on: SU(3) gauge symmetry and Z_2 symmetry + ~ U(1) Theoretical Prediction: SU(3) gauge symmetry and Z_2 symmetry, ~ U(1) Maximal CP violation: YLWu, Physics Letters B 714 (2012) 286–294, arXiv: Nearly Maximal 2-3 mixing

Unknown Questions:  Neutrinos are Dirac or Majorana ?  Absolute Values of Neutrino Masses ? Hierarchy or largely Degeneracy ?  CP Violation in Lepton-Neutrino Sector ?  How Many Neutrinos , Sterile Neutrinos ?  Leptogenesis and Matter-Antimatter Asymmetry ?  Rules of Neutrino in Astrophysics and Cosmology ?

Other Theoretical Questions  Why neutrino masses are so small  Mass hierarchy  m 31 2 > 0 ?  m 31 2 < 0 ?  Why neutrino mixings are so large in comparison with quark mixings  Possible relation between CKM & MNSP  Family Symmetry?

1. Dirac / Majorana Neutrinoless Double Beta Decay 2. Mass scale: m Neutrinoless Double Beta Decay, Single Beta Decay, Cosmology Issues in Neutrino Physics 2. Single Beta Decay 3. Neutrinoless Double Beta Decay 1. Cosmology (CMB+LSS): Planck: eV KATRIN: 0.2 eV CUORE: eV HD Cuoricini NEMO3 Bilenky, Giunti, arXiv: v3 [hep-ph]

 N Fukugita & Yanagida (1986): Leptogenesis Mechanism Seesaw Mechanism

Tri-Bimaximal Mixing: (Harrison,Perkins and Scott) Family Symmetry Exact Discrete symmetry  Tri-bimaximal mixing with  13 = 0 Based SO(3) gauge family symmetry : ( YLWu, 2008 PRD)

SU(3) Gauge Family Model  Gauge Symmetry has been well tested  Why lepton sector is so different from quark sector ? Neutrinos are neutral fermions and can be Majorana! Invariant Lagrangian for Yukawa Interactions YLWu, Physics Letters B 714 (2012) 286–294, arXiv: Z. Liu, YLWu, PLB 30161, DOI: /j.physletb , arXiv:

In terms of SU(3) representation with Z_2 symmetry (2--3): Fixing gauge : Z_2 symmetry invariant Lagrangian Why Local SU(3) Family Symmetry

In terms of SU(3) Representation SU(3) Expression of Tri-triplet Higgs Bosons Vacuum Structure

Standard Sea-saw Mechanism Standard Sea-saw Mechanism Neutrino Mass: Charged-lepton Mass :

Global U(1) Family Symmetries For Infinite Large Majorana neutrino masses Majorana neutrinos decouple Generating global U(1) family symmetries U(1)_1 x U(1)_2 x U(1)_3  Large but Finite Majorana Neutrino Masses  M_N >> v

Small Mass and Large Mixing of Neutrinos Approximate global U(1) family symmetries Smallness of neutrino masses and charged lepton mixing Neutrino mixings could be large !!!

Approximate Global U(1) Family Symmetries ~ U(1)_1 x U(1)_2 x U(1)_3 Exact Tri-bimaximal Neutrino Mixing ~

Leptonic CP Violation & Wofenstein Parametrization 轻子混合矩阵与 CP 破坏、 Wolfenstein 参数化

Leptonic CP Violation & Wofenstein Parametrization 轻子混合矩阵与 CP 破坏、 Wolfenstein 参数化

Agree to the experimental data(PDG) within errors Maximal CP Violation and CP-invariant Quantity 最大 CP 破坏位相与 CP 破坏不变量 Leptonic CP Violation & Wofenstein Parametrization 轻子混合矩阵与 CP 破坏、 Wolfenstein 参数化

From Global Fitting by Fogli et.al. Leptonic Wolfenstein Parameters and Majorana Phases

With Cabbibo Angle & Central Values Leptonic Wolfenstein Parameters, CP Phase, Majorana Phases v.s. Quark Wolfenstein Parameters, CP Phase

Neutrino Masses 中微子质量 Neutrino Masses Heavy Majorana Masses

Two inputs: with given parameter and Neutrino Masses 中微子质量 Normal spectrum 中微子质量的正常排序 Inverse Spectrum 中微子质量的反常排序 Total Mass 中微子总质量 Neutrino cosmology 中 微子宇宙学

Summary and Remarks  SU(3) gauge family symmetry is a natural motivation from three families of quarks/leptons  Smallness of neutrino masses and charged- lepton mixing is understandable from approximate global U(1) family symmetries with standard see-saw mechanism.  Tri-bimaximal mixing in the neutrino sector is a consequence of Z_2 symmetry of the vacuum structure of SU(3) gauge family symmetry  The neutrino masses are largely degenerate and testable from next generation experiments & cosmology

 The lepton mixing matrix can well be characterized by leptonic Wolfenstein parameters in the basis of tri-bimaximal neutrino mixing.  The leptonic CP violation has a strong correlation to the leptonic Wolfenstein parameters, a large or nearly maximal leptonic CP violation is favorable in a large region of parameters.  More precise measurements for the lepton mixing angles are very helpful  It is essential to have a direct measurement for the leptonic CP violationin near future. Summary & Remarks

THANKS THANKS