1 Bill Feess, Aerospace Karl Kovach, ARINC 2 May 2001 Proposed Satellite Mini-Almanac for L2C Message Type 6.

Slides:



Advertisements
Similar presentations
Introduction to the Global Positioning System
Advertisements

Multiuser Diversity Gain Enhancement by Guard Time Reduction Hend Koubaa, Vegard Hassel, Geir E. Øien Norwegian University of Science and Technology (NTNU)
GPS Theory and applications
Modern Navigation Thomas Herring MW 11:00-12:30 Room A
SVN-49 Signal Anomaly Presented by Tom Stansell GPSW POC: Lt. Col. James Lake, Ph.D.
Telecommunication Networks Satellite Radiocommunication Systems.
© 2013 The MITRE Corporation. All rights reserved. Tim Cashin, Dmitri Baraban, Roland Lejeune SBAS IWG #24 Meeting CNES, Toulouse, France January.
Jie Liu Microsoft Research Redmond, WA GPS Fundamentals Mobile Location Sensing Tutorial at MobiSys 2013.
Global Navigation Satellite Systems
Satellite Communications-III Satellite Radio Navigation and GPS
GPS - Global Positioning System Presented By Brindha Narayanan.
A SINGLE FREQUENCY GPS SOFTWARE RECEIVER
Connectivity Lab University of California, Berkeley Location and Timing with C/A code in GPS Wanbin Tang Jan 24, 2007.
GTECH 201 Session 08 GPS.
Submission doc.: IEEE /1452r0 November 2014 Leif Wilhelmsson, EricssonSlide 1 Frequency selective scheduling in OFDMA Date: Authors:
How to Turn on The Coding in MANETs Chris Ng, Minkyu Kim, Muriel Medard, Wonsik Kim, Una-May O’Reilly, Varun Aggarwal, Chang Wook Ahn, Michelle Effros.
Alternate Navigation Architectures and Data Needs Benjamin Peterson.
1 Chapter 2 Fundamentals of Data and Signals Data Communications and Computer Networks: A Business User’s Approach.
How The GPS System Works. How the GPS System Works 24 satellites + spares 6 orbital planes 55° inclination Each satellite orbits twice every 24 hours.
Chapter 3 part II Data and Signals
Chapter 16 GPS/Satnav. GPS Global Positioning System Will eventually replace the older, radio/radar based systems of VOR, ILS and NDB. The US system is.
Patrick Caldwell Chris Kellar. Overview  Basic Concepts  History  Structure  Applications  Communication  Typical Sources of Error.
August 16, 2000IMA1 Mathematical Challenges in GPS: New Opportunities Using New Civil Signals for Multipath Mitigation and Carrier Phase Ambiguity Resolution.
Principles of the Global Positioning System Lecture 07 Prof. Thomas Herring Room A;
Modern Navigation Thomas Herring
Aviation Considerations for Multi-Constellation GNSS Leo Eldredge, GNSS Group Federal Aviation Administration (FAA) December 2008 Federal Aviation Administration.
How Global Positioning Devices (GPS) work
L5 Signal Characteristics Dr. A.J. Van Dierendonck, AJ Systems Dr. Chris Hegarty, MITRE Co-chairs RTCA SC159 WG1 GPS L2/L5 Industry Day May 2, 2001.
GPS Civil Interface Observations Rick Hamilton CGSIC Executive Secretariat U.S. Coast Guard Navigation Center.
1/28/2010PRRMEC What is GPS… The Global Positioning System (GPS) is a U.S. space- based global navigation satellite system. It provides reliable positioning,
Data Communications & Computer Networks, Second Edition1 Chapter 2 Fundamentals of Data and Signals.
SVY 207: Lecture 4 GPS Description and Signal Structure
The Global Positioning System GPS Technologies and their Accuracies Joe Frankel Georgia Institute of Technology February 10, 2003.
جلسه دهم شبکه های کامپیوتری به نــــــــــــام خدا.
10/7/ Innovative Solutions International Satellite Navigation Division ION NTM 01 Capabilities of the WAAS and EGNOS For Time Transfer SBAS, an Alternate.
GPS(Global Positioning System) -An Introduction. What is the GPS? Orbiting navigational satellites Transmit position and time data Handheld receivers.
Global Positioning System
SVY 207: Lecture 13 Ambiguity Resolution
West Hills College Farm of the Future. West Hills College Farm of the Future GLONASS Russia’s global satellite navigation system 24 satellites in three.
CRGIS Global Positioning Systems The Basics CRGIS National Park Service.
Global Navigation Satellite Systems
GRIM & DynaPos Overview, Examples and Results Dr. Benjamin Remondi Kendall The XYZs' of GPS,
Harry Williams, Cartography1 Surveying Techniques II. GPS Despite the fact that Global Positioning Systems use very modern technology, the basic concept.
Medium Access Control Sub Layer
Proposal for a TC-2 Protocol Ed Greenberg Greg Kazz Oct /27/20151.
 LAN ◦ A LAN (Local Area Network) is a system whereby individual PCs are connected together within a company or organization.  WAN ◦ A WAN (Wide Area.
Global Positioning System Overview
West Hills College Farm of the Future. West Hills College Farm of the Future Precision Agriculture – Lesson 2 What is GPS? Global Positioning System Operated.
Chapter 2 GPS Crop Science 6 Fall 2004 October 22, 2004.
Chapter 1 Background 1. In this lecture, you will find answers to these questions Computers store and transmit information using digital data. What exactly.
1 SVY 207: Lecture 12 Modes of GPS Positioning Aim of this lecture: –To review and compare methods of static positioning, and introduce methods for kinematic.
Unit 1 Lecture 4.
Pseudoranges to Four Satellites
Precision Limits of Low-Energy GNSS Receivers Ken Pesyna and Todd Humphreys The University of Texas at Austin September 20, 2013.
Chapter Two Fundamentals of Data and Signals Data Communications and Computer Networks: A Business User's Approach Eighth Edition.
An intro about wimax and gps. INTRODUCTION WiMAX, the Worldwide Interoperability for Microwave Access, is a telecommunications technology that provides.
GPS Status and Modernization Munich Satellite Navigation Summit Munich, Germany 3 March 2009 Colonel David Buckman, US Air Force PNT Command Lead Air Force.
SVN-23/PRN-23 INTEGRITY FAILURE OF 01 JANUARY 2004 Capt Heather Eastlack 2nd Space Operations Squadron Written by: K. Kovach 9 Mar 04.
Uncertainty2 Types of Uncertainties Random Uncertainties: result from the randomness of measuring instruments. They can be dealt with by making repeated.
COSC 1P02 Introduction to Computer Science 5.1 Cosc 1P02 Week 5 Lecture slides Psychiatrist to patient "You have nothing to worry about - anyone who can.
1 Acquisition, Tracking and Position Calculations (Module 4) This module will provide the necessary theory behind acquisition, tracking, satellite position.
Younis H. Karim, AbidYahya School of Computer University Malaysia Perlis 1.
Part II Physical Layer Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
L5 Signal Characteristics
Chapter Two Fundamentals of Data and Signals
Principles of the Global Positioning System Lecture 07
GPS - Global Positioning System
Global Positioning System Supplemental from JD Text
Communication Networks NETW 501
Analog Transmission Example 1
Presentation transcript:

1 Bill Feess, Aerospace Karl Kovach, ARINC 2 May 2001 Proposed Satellite Mini-Almanac for L2C Message Type 6

2 Problem Long time to transmit a full set of constellation almanacs –ICD-GPS-200 design takes 12.5 min to transmit full set of almanacs L2C design requires 12 sec to transmit 1 message (= 1 subframe) –Half as fast as ICD-GPS-200 design due to ½-rate FEC encoding Baseline L2C design uses 1 message to transmit 1 SV almanac –Same as ICD-GPS-200 design (1 message = 1 subframe), 300 bits total When 5 different message types are being transmitted, it would take 60 sec between each transmission of an SV almanac To transmit a full set of almanacs, up to minutes would be required, depending on constellation size (24 to 28 SVs) This long time poses an operational problem to some users

3 ICD-GPS-200 Design Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Subframe 1Subframe 2Subframe 3Subframe 4Subframe 5 Master Frame (12.5 minutes) Frame 1 (0.5 min) Frame 2 (0.5 min) Frame 3 (0.5 min) Frame 4 (0.5 min) Frame 5 (0.5 min) Frame 6 (0.5 min) Frame 7 (0.5 min) Frame 8 (0.5 min) Frame 9 (0.5 min) Frame 10 (0.5 min) Frame 11 (0.5 min) Frame 12 (0.5 min) Frame 24 (0.5 min) Frame 25 (0.5 min)      

4 Baseline L2C Schemes Message Type 1 Long Frame (1.0 min)       Message Type 2Message Type 3Message Type 4Message Type 5 Message Type 1Message Type 2Message Type 3Message Type 4Message Type 5 Message Type 1Message Type 2Message Type 3Message Type 4Message Type 5 Long Frame (1.0 min) Message Type 1 Medium Frame (0.8 min)      Message Type 2Message Type 3 Message Type 1Message Type 2Message Type 4Message Type 5 Message Type 1Message Type 2Message Type 3 Medium Frame (0.8 min) Message Type 4 Message Type 1 Short Frame (0.6 min) Message Type 2Message Type 3 Message Type 1Message Type 2Message Type 4 Message Type 1Message Type 2Message Type 5 Short Frame (0.6 min)     Message Type 1Message Type 2Message Type 4 Short Frame (0.6 min) Message Types: 1 = Clock/Eph Part 1 2 = Clock/Eph Part 2 3 = Iono, Bias, Health 4 = Almanac 5 = Text (NANUs) Or Some Other Flexible Mix of Long, Medium, and/or Short Frames

5 Solutions to Problem Do Nothing (simply tell users "tough luck") –Half-hour to collect a full set of almanacs isn't that long Not for many types of receivers that are ON for hours at a time However, handheld receivers are a much different story Find a Way to Transmit the Almanacs Quicker –Limited on maximum available data rate -- not feasible –Stagger almanac transmissions between SVs -- feasible e.g., A/C/E-plane SVs transmit almanacs for B/D/F-plane SVs –Compress the almanac data to make it smaller -- feasible But how much compression is possible?

6 Compressing Almanacs - I Almanacs are used by a GPS receiver for: –SV visibility determination What SVs are visible or will soon become visible –Geometry-based SV selection GDOP, PDOP, HDOP, etc. –SV signal acquisition aid Approximate Doppler offset and code delay Almanacs are NOT used by a GPS receiver for: –Positioning, timing, or navigation Not enough precision (this is what clock/ephemeris data is for)

7 Compressing Almanacs - II Driver on almanac precision is code delay accuracy –Needed for direct P(Y)-code signal acquisition Acquire P(Y)-code signal without help from C/A-code –Direct P(Y) acquisition needs fairly good accuracy Roughly about the GPS receiver's time uncertainty 10  sec  3,000 m  2-week old almanac L2C almanacs not used for direct P(Y) acquisition –L2C receivers don't need to do direct P(Y) acquisition They'll do the normal C/A-code or Moderate-code acquisition Therefore, no major accuracy driver on L2C almanac precision –Direct P(Y) receivers will still use ICD-GPS-200 almanacs Collected from the P(Y)-code signal on either L1 or L2

8 Compressing Almanacs - III Really 2 main drivers on L2C almanac precision –Angular accuracy for visibility and geometry Wag a sensitivity threshold of a "couple of degrees" Receivers that do visibility/geometry computations every 5 min –Doppler accuracy for signal acquisition Wag a sensitivity threshold of a "couple of hundred Hertz" Receivers that have 32 Doppler search bins See what can do by editing ICD-GPS-200 almanacs –Using the above wags as guidelines

9 Compressing Almanacs - IVa

10 Compressing Almanacs - IVb

11 Compressing Almanacs - IVc

12 Compressing Almanacs - IVd Very Small Don't Care Assume Circular Orbit Combine if a Circular Orbit Very Small Simplify Small, Only ±2 Degrees Relative to the Nominal Small Relative to a Nominal A Scale Factor of 2 -6 Will Give a Resolution of ±1.4 Degrees

13 Compressing Almanacs - IVe

14 Compressing Almanacs - V Have unique bits per Almanac (= 25 bits) –Two ways to pack the almanac data bits Can pack into a number of fixed message types – Type X always has almanacs for PRNs 1 to n – Type Y always has almanacs for PRNs n+1 to 2n – Etc. Can pack into a single message type – Must include PRN number with each almanac –Trade-off considering 236 usable bits per message type Less 10 bits (WN a ) + 8 bits (t oa ) common across all almanacs Turns out to be a wash for up to 28 SVs (always 4 messages)

15 Compressed Almanac Proposal Proposal here is to compress to 7 SVs per almanac message –31 bits total per almanac (6 bits for PRN + 25 bits for orbit/health) With this compression, a complete set of almanacs for a 28 SV constellation could be sent in 4 min or less –Factor of 7 savings Result is thus 7 times shorter almanac collect time –Less drain on handheld receiver battery –Eliminate any need for periodic "almanac download" actions

16 Proposed "Mini-Almanac" Packet 31 BITS PRN a 6 BITS DELTA_A 8 BITS OMEGA_0 7 BITS ARGUMENT OF LATITUDE 7 BITS L1 HEALTH L2 HEALTH L5 HEALTH Reference Values: e = 0  i = SC (i = 55 deg) OMEGA_DOT = -2.5x10-9 SC/sec A ref = 26,559,710 m M 0 +  = Argument of Latitude Satellite clock terms not transmitted

17 Proposed Message Type 6 Format with Mini-Almanacs

18 Example L2C Schemes Message Type 1 Medium Frame (0.8 min)      Message Type 2Message Type 3 Message Type 1Message Type 2Message Type 5 Message Type 1Message Type 2Message Type 3 Medium Frame (0.8 min) Message Type 6 Message Type 1 Short Frame (0.6 min) Message Type 2Message Type 3 Message Type 1Message Type 2 Message Type 1Message Type 2Message Type 5 Short Frame (0.6 min)     Message Type 1Message Type 2 Short Frame (0.6 min) Message Types: 1 = Clock/Eph Part 1 2 = Clock/Eph Part 2 3 = Iono, Bias, Health 4 = Long Almanac 5 = Text (NANUs) 6 = Mini-Almanacs Or Some Other Flexible Mix of Long, Medium, and/or Short Frames Message Type 6 Message Type 1Message Type 2Message Type 5 Medium Frame (0.8 min) Message Type 6 Elapsed Time: 3.2 min (192 sec) Message Type 6 Message Type 1 Short Frame (0.6 min) Message Type 2Message Type 3 Message Type 1Message Type 2 Message Type 1Message Type 2Message Type 5 Short Frame (0.6 min) Message Type 1Message Type 2 Short Frame (0.6 min) Message Type 6 Elapsed Time: 4.8 min (288 sec)

19 Canvass GPS receiver manufacturers on concept –e.g., Brief concept at the L2C Industry Day Verify requirements for mini-almanac accuracy –R_Dot (i.e., Doppler offset  350 Hz OK?) –Elevation Angle (i.e., visibility computation  2 degrees OK?) –Others (e.g., consensus on no direct L2C acquisition?) Validate accuracies with proposed message structure and bits Modify the draft L2C signal PIRN to document new design Consider same change for the L5 signal data design Follow-Up Work

20 Back-up Slides

21 Type 4 vs Type 6 Messages No conflict between Type 4 and Type 6 messages –Type 6 doesn't necessarily replace Type 4 L2C "flexible protocol" allows either or both (or even neither) The L2C PIRN leaves the decisions up to the operator/users –Some benefit to having both Type 6 and Type 4 Supports all conceivable receiver designs and user needs –Some benefit to having just Type 6 (or just Type 4) Minimize throughput load on a very low data rate channel Don't repeat redundant information unless benefit gained

22 Staggered Almanac Messages L2C "flexible protocol" is really very flexible – Any message type in any 12-sec slot from any SV Within reason due to SV memory and operator workload Enables many schemes to transmit common data – Message Type 1 and Type 2 contain unique data Data which is unique to the transmitting SV – Message Types 6, 5, and 4 contain common data Data which is the same no matter which SV transmits it Staggered almanac messages is one such scheme

23 Previous Almanac Schemes Message Type 1 Medium Frame (0.8 min)      Message Type 2Message Type 3 Message Type 1Message Type 2Message Type 5 Message Type 1Message Type 2Message Type 3 Medium Frame (0.8 min) Message Type 6-1 Message Type 1 Short Frame (0.6 min) Message Type 2Message Type 3 Message Type 1Message Type 2 Message Type 1Message Type 2Message Type 5 Short Frame (0.6 min)     Message Type 1Message Type 2 Short Frame (0.6 min) Message Types: 1 = Clock/Eph Part 1 2 = Clock/Eph Part 2 3 = Iono, Bias, Health 4 = Long Almanac 5 = Text (NANUs) 6 = Mini-Almanacs Or Some Other Flexible Mix of Long, Medium, and/or Short Frames Message Type 6-2 Message Type 6-3 Message Type 1Message Type 2Message Type 5 Medium Frame (0.8 min) Message Type 6-4 Elapsed Time: 3.2 min (192 sec) Message Type 1 Short Frame (0.6 min) Message Type 2Message Type 3 Message Type 1Message Type 2 Message Type 1Message Type 2Message Type 5 Short Frame (0.6 min) Message Type 1Message Type 2 Short Frame (0.6 min) Elapsed Time: 4.8 min (288 sec) Message Type 6-1 Message Type 6-2 Message Type 6-3 Message Type 6-4

24 Message Type 6-3 Staggered Almanac Scheme Message Type 1 Long Frame (1.0 min)       Message Type 2Message Type 3 Message Type 1Message Type 2Message Type 5 Long Frame (1.0 min) Message Type 6-1 Compare this 1.0 minute elapsed time against the "traditional scheme" 24 to 28 minute elapsed time Message Type 6-4 Total Elapsed Time: 1.0 min (60 sec) Message Type 6-2 Message Type 6-3 A/C/E-Plane SVs Message Type 1 Long Frame (1.0 min)       Message Type 2Message Type 5 Message Type 1Message Type 2Message Type 3 Long Frame (1.0 min) Message Type 6-2 Message Type 6-4 Message Type 6-1 B/F/D-Plane SVs Message Type 1 Long Frame (1.0 min) Message Type 2Message Type 3 Message Type 1Message Type 2Message Type 5 Long Frame (1.0 min) Message Type 6-1 Message Type 6-4 Message Type 6-2 Message Type 6-3 Message Type 1 Long Frame (1.0 min) Message Type 2Message Type 5 Message Type 1Message Type 2Message Type 3 Long Frame (1.0 min) Message Type 6-2 Message Type 6-4 Message Type 6-1