Amplificarea pulsurilor laser ultrascurte. CPA in Ti:safir sau OPCPA? Solutii pentru laserul ELI-RO. (Partea I) R. Dabu Sectia Laseri, INFLPR.

Slides:



Advertisements
Similar presentations
1 Journées Scientifiques de lEDOM March 8, fs laser chain based on optical parametric chirped pulse amplification Lourdes Patricia Ramirez Equipe.
Advertisements

Vulcan Front End OPCPA System
Central Laser Facility
Femtosecond lasers István Robel
Development of a High-Energy Seed for Contrast Improvement of the Vulcan Laser Facility. Ian Musgrave, W. Shaikh, M. Galimberti, A. Boyle, K Lancaster,
1 LOA-ENSTA. 2 3 For PW class laser, a contrast better than is required I ASE has to be < W/cm² The ASE intensity is enough to generate.
Petawatt Field Synthesizer
R.6.2 Lasery Optoelektronika 2014 Dr hab. inż. B. B. Kosmowski 1.
Strecher, compressor and time structure manipulation
Components of ultrafast laser system
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
P.M. Paul, L.Vigroux, G. Riboulet, F.Falcoz. 2 Main Limitation in High gain Amplifier: Gain Narrowing Ti:Sa Pockels cell FWHM
High energy, high repetition rate pump laser system for OPCPAs A.-L. Calendron 1,2,3, L. E. Zapata 1,4, H. Çankaya 1,2, H. Lin 4 and F. X. Kärtner 1,2,3,4.
THALES OptroniqueICUIL 2010, Watkins Glen Key enabling technologies for compact high repetition rate Petawatt laser systems based on Titanium Sapphire.
TeraHertz Kerr effect in GaP crystal
Ultrafast Spectroscopy
J. Fils for the PHELIX team GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany Sept Speyer EMMI Workshop The PHELIX High Energy.
Vacuum optical compressor: Tentative ideas, layout, size … Mikhail Martyanov, CERN AWAKE TB and PEB meeting December 2014.
SLAC XFEL Short Bunch Measurement and Timing Workshop 1 Current status of the FERMI project (slides provided by Rene Bakker) Photoinjector laser system.
Amplificarea pulsurilor laser ultrascurte. CPA in Ti:safir sau OPCPA? Solutii pentru laserul ELI-RO. (Partea II) R. Dabu Sectia Laseri, INFLPR.
Time-Bandwidth Products getting the average power of ultrafast DPSS lasers from hundreds of mW to tens of Watts by Dr. Thomas Ruchti CERN, April 2006 SESAM.
Single-shot characterization of sub-15fs pulses with 50dB dynamic range A. Moulet 1, S.Grabielle 1, N.Forget 1, C.Cornaggia 2, O.Gobert 2 and T.Oksenhendler.
ILE OSAKA New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka ILE OSAKA US-Japan Workshop on Laser-IFE March.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
Formatvorlage des Untertitelmasters durch Klicken bearbeiten 1/26/15 1 kHz, multi-mJ Yb:KYW bulk regenerative amplifier 1 Ultrafast Optics and X-Ray Division,
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
Second ELI Nuclear Physics Workshop Bucharest – Magurele, 1-2 February 2010 ULTRASHORT PULSE, HIGH INTENSITY LASERS Dan C. Dumitras, Razvan Dabu Department.
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
DS3-DS4 Joint 1 st Task Meeting, Saclay 16 th -17 th May 2005 Matter under extremes conditions Femtosecond Laser Servers Laboratoire Francis Perrin SPAM.
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
Amplificarea pulsurilor laser ultrascurte. CPA in Ti:safir sau OPCPA? Solutii pentru laserul ELI-RO. (Partea III) R. Dabu Sectia Laseri, INFLPR.
Yb:CaF 2 Diode-Pumped Regenerative Amplifier: Study and Optimization of Pulse Duration Versus Repetition Rate ICUIL, Watkins Glen, 26 th September-1 st.
CTF3 photo injector laser status CERN 17 July 2009 CLIC meeting.
Intra-cavity Pulse Shaping of Mode-locked Oscillators Shai Yefet, Naaman Amer and Avi Pe’er Department of physics and BINA Center of nano-technology, Bar-Ilan.
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
C. Vicario LCLS ICW SLAC Oct. 9-11, THE DRIVE LASER: EXPERIENCE AT SPARC Carlo Vicario for SPARC collaboration.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Optimized temperature/bandwidth operation of cryogenic Yb:YAG composite thin-disk laser amplifier 1 Ultrafast Optics and X-Ray Division, Center for Free-Electron.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
About the possibility to build a 10-PW femtosecond laser for ELI-NP till 2015 Razvan Dabu National Institute for Lasers, Plasma and Radiation Physics Bucharest.
MIT Optics & Quantum Electronics Group Seeding with High Harmonics Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research.
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
Optical Amplifiers By: Ryan Galloway.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Laser System Upgrade Overview
TOWARD GENERATION OF HIGH POWER ULTRAFAST WHITE LIGHT LASER USING FEMTOSECOND TERAWATT LASER IN A GAS-FILLED HOLLOW-CORE FIBER Walid Tawfik Physics and.
Short pulse oscillator
Extreme Light Infrastructure in Romania: progress Daniel URSESCU Technical contact point for ELI in Romania INFLPR, Magurele, Romania.
Workshop for advanced THz and Compton X-ray generation
Drive Laser Introduction ‘ir’ master oscillator power amplifier chain (MOPA) uses standard chirped pulse amplification scheme (CPA) third harmonic generation.
Space-time analogy True for all pulse/beam shapes
Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. (a) Schematic of the noncollinear optical parametric amplification (NOPA) geometry.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the OPCPA laser system at Sandia National Laboratories. A stretched.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Status of the SPARC laser and “dazzler” experiments
Outline ATF’s Terawatt CO2 laser overview BESTIA concept (as presented at AAC ’14) Progress since AAC ’14 Current vision of the roadmap to 100 TW.
LASER SAFETY External EHS Expert Panel Workshop
Laser System Upgrade Overview
ILC/ATF-2 Laser System Sudhir Dixit (JAI, Oxford)
Business Development Manager, Bucarest 2011
Principle of Mode Locking
Kansas Light Source Upgrade
Short focal length target area: X-ray & ion sources and applications
Kansas Light Source Laser System J. R. Macdonald Laboratory
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
Injector Drive Laser Technical Status
Presentation transcript:

Amplificarea pulsurilor laser ultrascurte. CPA in Ti:safir sau OPCPA? Solutii pentru laserul ELI-RO. (Partea I) R. Dabu Sectia Laseri, INFLPR

De ce aceasta prezentare? - Cunoasterea stadiului actual pe plan mondial in domeniul laserilor de mare putere in femtosecunde - Incercam sa dam un raspuns privind solutia tehnica potrivita pentru laserul ELI-RO - Ce putem face ca sa ne incadram in efortul stiintific necesar pentru realizarea acestui laser - Sa facem un pas mai departe in pregatirea unor specialisti in domeniul “laseri in femtosecunde de mare putere si directii de cercetare bazate pe acesti laseri” - Sa atragem in echipa de lucru tineri cu un background care sa le permita incadrarea rapida in acest domeniu

CUPRINS 1. Amplificarea pulsurilor laser cu deriva de frecventa (“chirped pulse amplification” - CPA) in Ti:safir. - Caractersiticile Ti:safir ca mediu amplificator laser. - Probleme legate de amplificarea pulsurilor de femtosecunde de mare energie. 2. Ce este amplificarea parametrica si, in particular, OPCPA. - Oscilatia, generarea si amplificarea parametrica ca fenomene in optica neliniara. - Relatiile care guverneaza fenomenele parametrice. - Castigul unui amplificator parametric, banda de frecventa. 3. Amplificare parametrica optica (OPA) de banda larga si de banda foarte larga. - Conditiile de obtinere a amplificarii parametrice de banda larga sau foarte larga. - Cum se calculeaza pentru un cristal dat parametrii de functionare in cele doua cazuri. - Potentialul aplicarii pentru laserii cu pulsuri ultrascurte de mare putere. - Amplificarea parametrica a pulsurilor largite cu deriva de frecventa – OPCPA. - Metode de obtinere a amplificarii de banda larga: la degenerescenta, amplificare necoliniara, folosirea mai multor laseri de pompaj. Exemple. - Metode de obtinere a amplificarii de banda foarte larga. Benzile de amplificare foarte larga in cristale BBO si DKDP pentru laserii din clasa PW. 4. Prezentarea unor sisteme laser amplificatoare in domeniul PW: - Laserul rusesc cu oscilator in fs la 1250 nm (Cr:forsterite) si amplificare in cristale DKDP. - Laserul englez (910 nm) cu amplificare de mare energie in DKDP. - Laserul german cu amplificare pe ~ 900 nm. - Laserul francez cu amplificare pe 800 nm in BBO si Ti:safir. - Comparatie intre diferite sisteme de amplificare (China, Korea, Japonia, Rusia, Franta, Germania si Anglia). OPCPA versus amplificare in Ti-safir: avantaje si dezavantaje. 5. Care ar fi cea mai buna solutie pentru laserul ELI-RO? Ce e de facut pentru realizarea la timp si la parametrii propusi a sistemului laser ELI-RO?

Nuclear Laser Facility Layout (as presented in the ELI Cz-Hu-Ro proposal) 2xFRONT END DPSSL-pumped OPCPA FE1: mJ BW > 120 nm T CP = 50 ps kHz C > 10^12 FE2: > 100 mJ BW > 80 nm T CP = 1-2 ns Hz C > 10^12 TEST COMPRESSOR AMPLIFIERS Ti:Sapphire pumped by ns Nd:YAG & Nd:Glass lasers A1 + A2 BOOSTERS > 4 J, 10Hz DIAGNOSTICS TARGETS DIAGNOSTICS BW – Spectral bandwidth, C – intensity contrast, T CP - chirped pulse duration, T C – re-compressed pulse duration, Φ – focused laser beam diameter, I Σ – intensity on target Φ = 1-20 μm I Σ = 3 x W/cm 2 BEAM TRANSPORT IN VACUUM TARGETS A3 +A4+ A5 POWER AMPLIFIERS >300 J A3 +A4+ A5 POWER AMPLIFIERS >300 J A3 +A4+ A5 POWER AMPLIFIERS >300 J A1 + A2 BOOSTERS > 4 J, 10Hz COMPRESSOR 200 J COMPRESSOR >200 J COMPRESSOR 200 J COMPRESSOR >200 J COMPRESSOR 200 J COMPRESSOR >200 J BEAM TRANSPORT IN VACUUM

FRONT-END Middle of 2012 MEDIUM ENERGY AMPLIFIERS HIGH ENERGY AMPLIFIERS, COMPRESSOR, BEAM TRANSPORT AND FOCUSING End of 2013End of 2015 E ~ 200 mJ B ~ 100 nm (compressible down to 15 fs) T stretched ~ 2 ns Ns & ps contrast > Rep rate ≥ 10 Hz E > 4 J Compressible down to 15 fs Ns & ps contrast > Rep rate 10 Hz E > 300 J Compressible to 200 J Ns & ps contrast > Rep rate Hz I FOCUSED ~ W/cm Time schedule for ELI-RO Laser

Two possible solutions for high energy femtosecond pulses amplification: Optical Parametric Chirped Pulse Amplification - OPCPA Ti:sapphire Chirped Pulse Amplification – TiS_CPA Amplifier media DKDP crystals cm diameter, already available No significant thermal problems Expected pulse duration: 5-15 fs Relatively cheap crystals Central wavelength of the amplified pulse: ~ 910 nm F20 cm Ti:S crystals – probably available in the next 1-2 years Efficient cooling required Transversal lasing problems Expected pulse duration: fs More expensive crystals Central wavelength: ~ 800 nm Pump lasers Very precise synchronization Short pump pulse (2-3 ns) Conversion efficiency (pump to amplified signal radiation): 10-20% Non-critical synchronization Pump pulse duration non-critical in the nanosecond range (10-30 nsec) Conversion efficiency (from pump to amplified radiation): 30-40% 10 PW laser, a very difficult task (high risk project): X 50 more powerful than any existing femtosecond commercial laser X 20 more powerful than any existing femtosecond laboratory laser system X 500 more powerful than femtosecond TEWALAS laser at INFLPR Factors of (high) risk : - high energy ( J/pulse) laser amplifier - re-compression of stretched amplified pulses and laser beam focusing - expected results of nuclear physics experiments

Selection criteria for ELI-RO laser system 1. Able to fulfill required specifications: - Peak pulse power ~ 10 PW per one amplifier chain - Pulse-width of the re-compressed amplified pulse < 20 fs - Rep-rate 1/10 – 1/60 Hz - Ns & ps contrast > Focused laser intensity W/cm 2 (Laser beam focused near the diffraction limit) 2. Existing techniques proved by the long term laser facilities operation (200 TW Ti:sapphire CPA laser systems) 3. Existing laser components and devices necessary to reach 10 PW power (e.g. ~ 30 cm diameter DKDP crystals) 4. Required laser components and devices that could be probably developed in the next years (20-cm diameter Ti:S rods; Nd:YAG, Yb:YAG, Nd:glass, diode pump lasers; diffraction gratings, etc.) 5. Conditions of operation and expected laser system long-term stability 6. Costs of the whole laser system First target : 2012  Front-End able to satisfy the required laser specifications to be installed in Bucharest- Magurele.

Principle of Chirped Pulse Amplification (CPA) Amplification Oscillator Stretcher Compressor - ultra-short pulse duration, - phase-locked spectral band-width CPA technique involves the temporal stretching of ultra-short pulses with a large spectral bandwidth delivered by an oscillator. This way, the laser intensity is significantly reduced in order o avoid the damage of the optical components of the amplifiers and the temporal and spatial profile distortion by non-linear optical effects during the pulse propagation. After amplification, the laser pulse is compressed back to a pulse duration very closed to its initial value for Gaussian temporal and spectral pulse profile

Definitions related to the broad-band ultrashort pulses Ultrashort laser pulse is characterized by: -Central frequency and corresponding wave-number - Frequency spread arround and corresponding spread in wave-number Evolution in time of the pulse is related to: Phase velocity Group velocity If second, third order terms are negligible, the laser pulse travels undistorted in shape with the goup velocity V G.

Definitions related to the broad-band ultrashort pulses Group velocity mismatch Group velocity dispersion Electric field of the laser pulse in the frequency domain: where Group delay Group delay dispersion Third order dispersion L, medium length

Ti:sapphire amplification Polarized fluorescence spectra and calculated gain line for a optical c-axis normal cut Ti:sapphire rod; π – c-axis parallel polarized radiation; σ – c-axis normal polarization Stimulated emission cross section at 795 nm (c-axis parallel polarized radiation): P. F. Moulton, JOSA B, Vol. 3, 125 (1986)

Pulse amplification in Ti:sapphire Energy gain: where F in is the input pulse fluence, F out is the output pulse fluence, is the saturation fluence of Ti:sapphire,, n is the inverted population, l is the medium length. Very low input signal, F in /F s << 1, small signal gain: High-level energy densities, F in /F s >> 1, saturated gain: W. Koechner, “Solid-State Laser Engineering”, Springer Verlag, Germany, 1996 Damage threshold fluence at 532 nm, 10 ns pulse duration, 5-10 J/cm 2 Conservative fluence at 532 nm, 10 ns pulse duration, J/cm 2

TEWALAS - schematic drawing of the laser system

TEWALAS - Laser system layout

Critical characteristics of Ti:sapphire amplifiers 1.Spectral band-width of the amplified pulses (re-compressed pulse duration) 2.Intensity contrast of femtosecond pulses versus amplified spontaneous emission (ASE) and nanosecond pre-pulses 3.Strehl ratio, focused spot

Pulse spectrum narrowing during Ti:S amplification – TEWALAS_INFLPR TEWALAS laser spectra: (a) without active Mazzler; (b) optimized by Mazzler. Mauve line – FEMTOLASERS oscillator; yellow line – after first multi-pass amplifier; after second multi-pass amplifier. (a) (b)

TEWALAS beam profiles (a) MP1, (b) MP2

(a) (b) (c) Pulse duration measurements using SPIDER. (a), (b) with Dazzler phase correction; (c) without phase correction. All cases: with spectrum correction by Mazzler.

ASE contrast improvement by cross-polarized wave (XPW) generation XPW generation – four-wave mixing process governed by the third–order nonlinearity: XPW generated wave has the same wavelength as the input pulse and a cubic dependence on the intensity A. Jullien et al, Opt. Lett. 30, 920 (2005); A. Jullien et al, Appl. Pys. B, 84, 409 (2006); L. Canova et al, Appl. Phys. B, 93, 443 (2008) Lens P1Y 2 mm BaF2 P2 X Z P1, P2 – crossed polarizers Energetic efficiency – 10-30% Contrast improvement – 3-5 orders of magnitude β angle Fs nJ Oscillator Ps Stretcher mJ Amplifier Fs compressor XPW 1-2 ns Stretcher High-energy ten- hundred J amplifier chain High-energy fs compressor PW fs pulses Double CPA PW laser f Peak intensity level ~ 3 x 10^12 W/cm^2

Nanosecond Contrast Nanosecond 8x10 -8

Problems of Ti:sapphire laser amplifiers for PW femtosecond laser facilities Gain narrowing due to the high factor amplification, 5 nJ → 250 J, M = 5 x Amplified pulse duration – expected not shorter than fs Required nanosecond and picosecond intensity contrast for a 10 PW laser ( W/cm 2 focused peak power density) > Thermal loading (532, 527 nm → 800 nm) Ti:sapphire rods, ~ 200 cm diameter required (currently available – 100 cm diameter) Transversal lasing in large diameter Ti:sapphire rods. Development of high energy, high repetition rate nanosecond green lasers, with smooth, uniform spatial intensity profile. Strehl ratio