Lecture 16 Generators Self Inductance AC circuits RLC circuits.

Slides:



Advertisements
Similar presentations
Induced Voltages and Inductance
Advertisements

Induced Voltages and Inductance
Induced Voltages and Inductance
-Generators -Motors -Eddy Currents -Maxwell’s Four Equations AP Physics C Mrs. Coyle.
Induced Voltages And Inductance Chapter 20 Hans Christian Oersted.
Chapter 22 Electromagnetic Induction Induced Emf and Induced Current There are a number of ways a magnetic field can be used to generate an electric.
Electromagnetic Induction
AP Physics C Montwood High School R. Casao
Electromagnetic Induction
Induction and Alternating Current
Magnetic Flux and Faraday’s Law of Induction. Questions 1.What is the name of the disturbance caused by electricity moving through matter? 2.How does.
When a coil of wire and a bar magnet are moved in relation to each other, an electric current is produced. This current is produced because the strength.
Electromagnetic Induction
Electromagnetic Induction
Induced Voltages and Inductance
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment A primary coil is connected to a battery and a secondary coil is connected to an ammeter.
Chapter 21 Electromagnetic Induction and Faraday’s Law.
15/25/2016 General Physics (PHY 2140) Lecture 18  Electricity and Magnetism Induced voltages and induction Generators and motors Self-induction Chapter.
Chapter 21 Electromagnetic Induction and Faraday’s Law.
Electromagnetic Induction
Chapter 31 Faraday’s Law.
Chapter 29 Electromagnetic Induction and Faraday’s Law
Chapter 20 Induced Voltages and Inductance. Faraday’s Experiment – Set Up A current can be produced by a changing magnetic field First shown in an experiment.
Chapter 20 Induced Voltages and Inductance. General Physics Inductors & RL Circuits Sections 5–8.
Induced Voltages and Inductance
Electromagnetic Induction Create electric current from changing magnetic fields.
Induced Voltage and Inductance
Announcements Clicker quizzes NO LONGER GRADED!
It is sometimes difficult to find the polarity of an induced emf. The net magnetic field penetrating a coil of wire results from two factors.
Chapter 24 Time-Varying Currents and Fields. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC.
Electro- magnetic Induction Lecture 3 AP Physics.
Chapter 25 Electromagnetic Induction. Objectives 25.1 Explain how a changing magnetic field produces an electric current 25.1 Define electromotive force.
Motors and Galvanometers
Chapter 31 Faraday’s Law.
Generators and Motors. Lightning Review Last lecture: 1.Induced voltages and induction Induced EMF Induced EMF Faraday’s law Faraday’s law Motional EMF.
Chapter 20 Induced Voltages and Inductance. Michael Faraday 1791 – 1867 Great experimental scientist Invented electric motor, generator and transformers.
Chapter 21 Electromagnetic Induction and Faraday’s Law.
3/17/2014 PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer.
AC Generators generators are devices which convert mechanical energy into electrical energy.
Electromagnetic Induction and Faraday’s Law. Induced EMF Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric.
Copyright © 2009 Pearson Education, Inc. Chapter 29 Electromagnetic Induction and Faraday’s Law.
Electromagnetic Induction
Key ideas 21.2 Application of electromagnetic induction  Electromagnetic induction is used in microphones tape recording and playback generation of electricity.
Chapter 22 Electromagnetic Induction Induced Emf and Induced Current There are a number of ways a magnetic field can be used to generate an electric.
Electromagnetic Induction Magnetism can induce electrical currents in wires You just have to keep motion between the magnets and wires.
Chapter 20 Induced Voltages and Inductance. Induced emf A current can be produced by a changing magnetic field A current can be produced by a changing.
PHY 102: Lecture Induced EMF, Induced Current 7.2 Motional EMF
 Electromagnetic Induction – The production of an emf (the energy per unit charge supplied by a source of electric current) in a conducting circuit by.
Magnetic Induction 1Physics is Life. Objectives To learn how magnetic fields can produce currents in conductors To understand how this effect is applied.
Electromagnetic Induction
Induced Voltages and Inductance
Motional EMF xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx v B E - F E = -eE F B = -evB eE = evB E = vB V ind = LE = LvB.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Electromagnetic Induction
Induced Voltages and Inductance
Electric Generators Convert mechanical energy into electrical energy
Magnetism Equations F = qvB sin q E = F/q E = V/d F = ma ac = v2/r
Electromagnetic Induction
General Physics (PHY 2140) Lecture 18 Electricity and Magnetism
Electromagnetic induction
Electromagnetic Induction and Faraday’s Law
Electric Currents from Magnetism
20.5 Generators Alternating Current (AC) generator
Electromagnetic Induction
Induced Voltages and Inductance
Electromagnetic Induction
UNIT - I D.C. GENERATORS.
Electromagnetic Induction and Faraday’s Law
AC current.
Presentation transcript:

Lecture 16 Generators Self Inductance AC circuits RLC circuits

Application – Tape Recorder A magnetic tape moves past a recording and playback head The tape is a plastic ribbon coated with iron oxide or chromium oxide To record, the sound is converted to an electrical signal which passes to an electromagnet that magnetizes the tape in a particular pattern To playback, the magnetized pattern is converted back into an induced current driving a speaker

FIGURE 20. 19 (a) Major parts of a magnetic tape recorder FIGURE 20.19 (a) Major parts of a magnetic tape recorder. If a new recording is to be made, the bulk erase head wipes the tape clean of signals before recording. (b) The fringing magnetic field magnetizes the tape during recording. Fig. 20-19, p.672

FIGURE 20. 19 (a) Major parts of a magnetic tape recorder FIGURE 20.19 (a) Major parts of a magnetic tape recorder. If a new recording is to be made, the bulk erase head wipes the tape clean of signals before recording. Fig. 20-19a, p.672

FIGURE 20.19 (b) The fringing magnetic field magnetizes the tape during recording. Fig. 20-19b, p.672

Generators Alternating Current (AC) generator Converts mechanical energy to electrical energy Consists of a wire loop rotated by some external means There are a variety of sources that can supply the energy to rotate the loop These may include falling water, heat by burning coal to produce steam

AC Generators, cont Basic operation of the generator As the loop rotates, the magnetic flux through it changes with time This induces an emf and a current in the external circuit The ends of the loop are connected to slip rings that rotate with the loop Connections to the external circuit are made by stationary brushes in contact with the slip rings

Fig. P20-30, p.688

AC Generators, final The emf generated by the rotating loop can be found by ε =2 B ℓ v=2 B ℓ sin θ If the loop rotates with a constant angular speed, ω, and N turns ε = N B A ω sin ω t ε = εmax when loop is parallel to the field ε = 0 when when the loop is perpendicular to the field

AC Generators – Detail of Rotating Loop The magnetic force on the charges in the wires AB and CD is perpendicular to the length of the wires An emf is generated in wires BC and AD The emf produced in each of these wires is ε= B ℓ v= B ℓ sin θ

DC Generators Components are essentially the same as that of an ac generator The major difference is the contacts to the rotating loop are made by a split ring, or commutator Demo1 Demo2

DC Generators, cont The output voltage always has the same polarity The current is a pulsing current To produce a steady current, many loops and commutators around the axis of rotation are used The multiple outputs are superimposed and the output is almost free of fluctuations

Turbines turn electric generators at a hydroelectric power plant.

Motors Motors are devices that convert electrical energy into mechanical energy A motor is a generator run in reverse A motor can perform useful mechanical work when a shaft connected to its rotating coil is attached to some external device

Motors and Back emf The phrase back emf is used for an emf that tends to reduce the applied current When a motor is turned on, there is no back emf initially The current is very large because it is limited only by the resistance of the coil

Motors and Back emf, cont As the coil begins to rotate, the induced back emf opposes the applied voltage The current in the coil is reduced The power requirements for starting a motor and for running it under heavy loads are greater than those for running the motor under average loads

Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself As the current increases, the magnetic flux through a loop due to this current also increases The increasing flux induces an emf that opposes the change in magnetic flux As the magnitude of the current increases, the rate of increase lessens and the induced emf decreases This opposing emf results in a gradual increase of the current

Self-inductance cont The self-induced emf must be proportional to the time rate of change of the current L is a proportionality constant called the inductance of the device The negative sign indicates that a changing current induces an emf in opposition to that change

Self-inductance, final The inductance of a coil depends on geometric factors The SI unit of self-inductance is the Henry 1 H = 1 (V · s) / A You can determine an expression for L