Content: Hydrothermal conversion: - overview - carbonization - liquefaction chemicals Conclusion Feedstock:
Properties of Water 374 °C Data: Steam tables Auch das Ionenprodukt des Wasser ist eine Funktion von Dichte und Temperatur. Da die Ionenbildung ein stark endothermer Prozess ist, ergibt sich aber ein etwas anderer Verlauf als bei der relativen Dielektrizitätskonstante. Das Ionenprodukt ist unterhalb der kritischen Temperatur und bei höheren Drücken auch oberhalb der kritischen Temperatur wesentlich höher als unter Normalbedingungen. Diese um Größenordnungen höhere Ionenkonzentration führt zur Katalyse von Reaktionen, die normalerweise den Zusatz von Säuren und Basen erfordern. Data: Steam tables
Hydrothermal Conversions of Biomass Hydrothermal Biomass Gasification A. Kruse, J. of Supercritical Fluids 47, 391-399, 2009. Water - A magic solvent for biomass conversion.A. Kruse, N. Dahmen, The Journal of Supercritical Fluids 96, 36-45, 2015.
Furfurales Different short Intermediates Cellulose Glucose ⇄ Fructose Furfurales Different short Intermediates Phenols Gases: H2, CO2, CH4, CO Char / Coke Using groups the chemistry of hydrothermal biomass conversion looks simple… Hydrothermal Biomass Gasification A. Kruse, J. of Supercritical Fluids 47, 391-399, 2009.
Hydrothermal Carbonization: Chemistry Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification T. Karayildirim, A. Sinag, A. Kruse; Chemical Engineering & Technology 31, 1561-1568, 2008
Hydrothermal Carbonization: Particles Experimental comparison of hydrothermal and vapothermal carbonization A. Funke, F. Reebs, A. Kruse; Fuel Processing Technology 115, 261-269, 2013.
Hydrothermal Carbonization: Properties HTC-product from digestate, spheres 0,002 1/°C HTC-product from digestate, porous Digestate 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 °C Experimental comparison of hydrothermal and vapothermal carbonization A. Funke, F. Reebs, A. Kruse; Fuel Processing Technology 115, 261-269, 2013.
Hydrothermal Carbonization: Kinetics Biomass Conversion calculated Residue Conversion measured Coal 1 Coal 2 A. Kruse, R. Grandl, Hydrothermale Karbonisierung: 3. Kinetisches Modell Hydrothermal Carbonization: 3. Kinetic Model. Chemie Ingenieur Technik 87 (2015) 449-456 A. Kruse, F. Badoux, R. Grandl, D. Wüst, Hydrothermal carbonization: 2. Kinetics of draff conversion. Chemie-Ingenieur-Technik 84 (2012) 509-512.
Reactors for Hydrothermal Carbonization in collaboration with & The carbon materials and process waters for physical, chemical and biological investigations are produced within this risk-benefit analysis as part of the project CarboSolum in which Mrs. Dr. Holweg, the LTZ Augustenberg Karlsruhe-Durlach, the Institute of Catalytic Research and –technology from Karlsruhe Institute of Technology as well as other scientific institutions and the company AVA-CO2 Research GmbH are involved. At the Institute of Catalytic Research and Technology as well as at the University of Hoheneheim HTC-experiments at lab and technical scale are possible. By working together with the company AVA-CO2 the production of greater amounts of HTC-products for providing field experiments for example have been conducted in a pilot and demonstration plant. Autoclaves A-0.01 and A-0.25 Pilot plant K3-335 Demonstration plant HTC-0
Diploma Thesis Dominik Wüst, Master Thesis Gero Becker Hydrothermal Carbonization for Phosphate Recovery Solved Phosphate 60% 30% Time / h Mg,NH4-Phosphate HTC -> Leaching -> Precipation (N,P) Nearly 80 % yield (phoshate) from sewage sludge! Diploma Thesis Dominik Wüst, Master Thesis Gero Becker
Hydrothermal Carbonization – Applications Energy Carrier Soil improver (?) * Activated Coal (?) Catalyst support (?) Super-capacitors (?) Fuel Cells (?) Carbon Black (?) Material for immobilization of microorganism (?)** * I. Bargmann, M.C. Rillig, A. Kruse, J.M. Greef, M. Kücke, Initial and subsequent effects of hydrochar amendment on germination and nitrogen uptake of spring barley. Journal of Plant Nutrition and Soil Science 177 (2014) 68-74. **I. Bargmann, R. Martens, M.C. Rillig, A. Kruse, M. Kücke, Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Journal of Plant Nutrition and Soil Science 177 (2014) 59-67.
Hydrothermal Conversions of Biomass Hydrothermal Biomass Gasification A. Kruse, J. of Supercritical Fluids 47, 391-399, 2009. Water - A magic solvent for biomass conversion.A. Kruse, N. Dahmen, The Journal of Supercritical Fluids 96, 36-45, 2015.
Comparison HTL FP Fossil H2O (wt%) <0.2 15-30 0.1 Density (kg/m³) 820-845 1100-1300 940 Viscosity (Pa s) 0.75-1 0.02-0.1 0.18 HHV (MJ/kg) 30-36 16-19 40 N. Dahmen, E. Henrich, A. Kruse, K. Raffelt, Biomass liquefaction and gasification, in:H.P. Blaschek, N. Qureshi, A. Vertes, H. Yukawa (Eds.), Biomass to Biofuels: strategies for global industries, 2010, p. 91.
Organics dissolved in the aqueous phase Temperature: 300-375 ºC Pressure: 10-25 MPa Hydrothermal Liquefaction: Algae I Gas Organics dissolved in the aqueous phase Microalgae Bio-Oil Solid residue Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction , D. Lòpez Barreiro, C. Samorí, G. Terranella, U. Hornung, A. Kruse, and W. Prins, Bioresource Technology, 174 (2014) 256-265.
Hydrothermal Liquefaction: Algae II Temperature: 350 °C Holding time: 15 min Biomass in water: 10% dw Microalgae Macroalgae Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction , D. Lòpez Barreiro, C. Samorí, G. Terranella, U. Hornung, A. Kruse, and W. Prins, Bioresource Technology, 174 (2014) 256-265.
Chemicals: Hydroxymethylfurfural I Pictures: AVA Biochem
Chemicals: Hydroxymethylfurfural II Biomass
Chemicals: Phenols Modeling the lignin degradation kinetics in a ethanol/formic acid solvolysis approach. part 2. validation and transfer to variable conditions, D. Forchheim, J.R. Gasson, U. Hornung, A. Kruse, and T. Barth, , Industrial and Engineering Chemistry Research, 51 (2012) 15053-15063.
Chemicals: Phenols II Within our research centre, five institutes are involved in these activities. The site, where the pilot plant is envisage to build up, is shown in green. Partners from nearby universities are already integrated into our fundamental studies. With our cooperation partners Lurgi and Future Energy we will build up the pilot plant and bring the process into market. Modeling the lignin degradation kinetics in an ethanol/formic acid solvolysis approach. Part 1. Kinetic model development D.Forchheim, J.R. Gasson, U. Hornung, A. Kruse, T.Barth Industrial and Engineering Chemistry Research 51 (32), 10595-10606, 2012
Conclusion Suitable for wet biomass Higher selectivity, lower temperature than dry processes, high pressure Applications of HTC under research Hydrothermal liquefaction for algae (waste water treatment) Platform chemicals (HMF, Phenols) available
Tailor-made hydrochar Many Thanks! Tailor-made hydrochar
HTC product characterization Stelta et al., 2011 Crelling et al., 2006 Parameter HTC-coal Torrefied wood Lignite Carbon content (%), daf 50-70 51-76 ~70 HHV (MJ/kg), daf 25-30 20-22 ~28 Volatile matter (%), daf 60-70 - ~60 BET (m²), N2 1-10 Wheat straw 220 °C; 1 h 220 °C; 10 h
Coalification of biomass for cauliflower, grass and straw