School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The chemical interaction of dust and gas in prestellar cores Paola Caselli.

Slides:



Advertisements
Similar presentations
Astrochemistry Panel Members: Jacqueline Keane Hideko Nomura Ted Bergin Tatsuhiko Hasegawa Karin Öberg Yi-Jehng Kuan.
Advertisements

High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Chemical evolution from cores to disks
Jeong-Eun Lee Kyung Hee University University of Texas at Austin.
Observations of deuterated molecules as probes of the earliest stages of star formation. Helen Roberts University of Manchester.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
High resolution (sub)millimetre studies of the chemistry of low-mass protostars Jes Jørgensen (CfA) Fredrik Schöier (Stockholm), Ewine van Dishoeck (Leiden),
Low-Mass Star Formation in a Small Group, L1251B Jeong-Eun Lee UCLA.
A Search For Fragmentation in Starless Cores with ALMA Scott Schnee (NRAO) Hector Arce, Tyler Bourke, Xuepeng Chen, James Di Francesco, Michael Dunham,
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Chemistry in low-mass star forming regions: ALMA ’ s contribution Yuri Aikawa (Kobe Univ.) Collaborators: Hideko Nomura (Kobe Univ.) Hiroshi Koyama (Kobe.
The ortho-H 2 abundance and the age of molecular clouds Laurent Pagani LERMA, UMR8112 du CNRS, Observatoire de Paris.
A Molecular Inventory of the L1489 IRS Protoplanetary Disk Michiel R. Hogerheijde Christian Brinch Leiden Observatory Jes K. Joergensen CfA.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
Chemistry and line emission of outer protoplanetary disks Inga Kamp Introduction to protoplanetary disks and their modeling Introduction to protoplanetary.
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
Leonardo Testi: (Sub)Millimeter Observations of Disks Around High-Mass Proto-Stars, SMA, Cambridge 14 Jun 2005 Disks around High-Mass (Proto-)Stars  From.
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Complex organic molecules in hot corinos
Background Last review on disk chemistry in Protostars and Planets: Prinn (1993) Kinetic Inhibition model - (thermo-)chemical timescale vs (radial) mixing.
The abundances of gaseous H 2 O and O 2 in dense cloud cores Eric Herbst & Helen Roberts The Ohio State University.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Spectral Line Survey with SKA Satoshi Yamamoto and Nami Sakai Department of Physics, The Univ. of Tokyo Tomoya Hirota National Astronomical Observatory.
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
Initial Conditions for Star Formation Neal J. Evans II.
ERIC HERBST DEPARTMENTS OF PHYSICS, CHEMISTRY AND ASTRONOMY THE OHIO STATE UNIVERSITY Gas and Dust (Interstellar) Astrochemistry.
ALMA DOES GALAXIES! A User’s Perspective on Early Science Jean Turner UCLA.
Chemical Models of High Mass Young Stellar Objects Great Barriers in High Mass Star Formation H. Nomura 1 and T.J. Millar 2 1.Kyoto Univ. Japan, 2. Queen’s.
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.
The properties of starless cores in intermediate-/high-mass protoclusters Francesco Fontani European Southern Observatory (ESO) Institut de RadioAstronomie.
Unbiased Spectral Survey of the low mass protostar IRAS A
Introduction to Astrochemistry
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
Deuterated molecules: a chemical filter for recently evaporated gas Francesco Fontani (INAF-OAA) C. Codella, C. Ceccarelli, B. Lefloch, M.E. Palumbo …
Dark Cloud Modeling of the Abundance Ratio of Ortho-to-Para Cyclic C 3 H 2 In Hee Park & Eric Herbst The Ohio State University Yusuke Morisawa & Takamasa.
“The Dusty and Molecular Universe” October 2004
School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The IR-mm spectrum of a starburst galaxy Paola Caselli Astrochemistry of the.
Testing grain-surface chemistry in massive hot-core regions and the laboratory (A&A, 465, 913 and A&A submitted) Suzanne Bisschop Jes Jørgensen, Ewine.
Studying Infall Neal J. Evans II.
Astrochemistry University of Helsinki, December 2006 Lecture 3 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Searching for massive pre-stellar cores through observations of N 2 H + and N 2 D + (F. Fontani 1, P. Caselli 2, A. Crapsi 3, R. Cesaroni 4, J. Brand 1.
Molecules around AE Aurigae Patrick Boissé, IAP Collaborators oAndersson BG. oGalazutdinov G. oFederman S. oGerin M. oGry C. oHilly-Blant P. oKrelowski.
ASTROPHYSICAL MODELLING AND SIMULATION Eric Herbst Departments of Physics, Chemistry, and Astronomy The Ohio State University.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Helen Roberts University of Manchester
Some Chemistry in Assorted Star-forming Regions Eric Herbst.
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
The Evolution of Massive Dense Cores Gary Fuller Holly Thomas Nicolas Peretto University of Manchester.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array NRAO Instruments Provide.
The Structures on Sub-Jeans Scales, Fragmentation, and the Chemical Properties in Two Extremely Dense Orion Cores Zhiyuan Ren, Di Li (NAOC) and Nicolas.
ERIC HERBST DEPARTMENTS OF PHYSICS AND ASTRONOMY THE OHIO STATE UNIVERSITY Chemistry in Protoplanetary Disks.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
Fumitaka Nakamura (National Astronomical Observatory of Japan)
Deuterium-Bearing Molecules in Dense Cores
Filamentary Structures Traced by IRDCs
Using ALMA to disentangle the Physics of Star Formation in our Galaxy
Probing CO freeze-out and desorption in protoplanetary disks
Molecules: Probes of the Interstellar Medium
Star Formation/ISM with Herschel
Chemical evolution of N2H+ in massive star-forming regions
The chemistry and stability of the protoplanetary disk surface
Presentation transcript:

School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES The chemical interaction of dust and gas in prestellar cores Paola Caselli

Collaborators Low-mass: Aikawa (Kobe), Bacmann (LAOG), Belloche (Bonn), Bizzocchi (Lisbon), Bourke (CfA), Ceccarelli (LAOG), Crapsi (Leiden), Di Francesco (Victoria), Emprechtinger (Caltech), Foster (BU), Friesen (NRAO), Goodman (Harvard), Jørgensen (Copenhagen), Keto (CfA), Myers (CfA), Pagani (LERMA), Pineda (Manchester), Schnee (NRAO), Tafalla (Madrid), Vastel (Toulouse), van der Tak (Groningen), Walmsley (Arcetri) Intermediate-mass: Alonso-Albi (Madrid), Ceccarelli (LAOG), Crimier (Grenoble), Fuente (Madrid), Johnstone (Victoria), Plume (Calgary) Massive: Bourke (CfA), Butler (Florida), Fontani (IRAM), Henshaw (Leeds), Hernandez (Florida), Jimenez-Serra (CfA), Pillai (Caltech), Tan (Florida), Zhang (CfA)

Main Uncertainties Cosmic-ray ionization rate Elemental abundance (metals) Oxygen chemistry PAHs abundance Surface chemistry Dust evolution H 2 ortho-to-para ratio (Herschel !) (e.g. Pagani et al. 2009; Troscompt et al. 2009) (e.g. Garrod et al. 2009; Semenov et al. 2010) Alves et al (e.g. Keto & Caselli 2008) (e.g. Wakelam & Herbst 2008) (e.g. Ormel et al. 2009; Keto & Caselli 2010)

Outline 1.The formation of H 2 2.The chemistry of water 3.CO formation 4.Nitrogen chemistry 5.Molecular freeze-out 6.Deuterium fractionation 7.The Herschel view Bergin & Tafalla Di Francesco et al PDR layer Core center

H + H  H 2 on the surface of dust grains (Gould & Salpeter 1963; Hollenbach & Salpeter 1970; Jura 1974; Pirronello et al. 1999; Cazaux & Tielens 2002; Habart et al. 2003; Bergin et al. 2004; Cuppen & Herbst 2005; Cazaux et al. 2008; Cuppen et al. 2010) 1. The formation of H 2

Evidences of freeze-out: deuterium fractionation 2. The chemistry of water On the surface of dust grains (e.g. Tielens & Hagen 1982; Cuppen & Herbst 2007; Ioppolo et al. 2008; Cazaux et al. 2010): Cuppen & Herbst 2007 Tielens & Hagen 1982

Evidences of freeze-out: deuterium fractionation 2. The chemistry of water In the gas phase (e.g. Hollenbach et al. 2009): Desorption (d) from dust surfaces (Hollenbach et al. 2009; Garrod 2008; Cazaux et al. 2010):

Hollenbach et al G 0 variationsGrain size variations Photodesorption yield variations 2. The chemistry of water Volume density variations SWAS + Odin upper limits: x(H 2 O) gas <10 -8 (Bergin & Snell 2002; Klotz et al. 2008) BUT Line trapping and absorption of the dust continuum challenge the measurement of x(H 2 O) gas (Poelman et al. 2007)

3. CO formation CO t CO ~ n C /[  n(H 2 )] ~ 10 5 yr Sternberg & Dalgarno 1995

4. Nitrogen chemistry Flower et al Hily-Blant et al N2N2 N + H 3 +  NH + + H 2  N + OH  NO + H N + CH  CN + H t N2 ~ 10 6 yr in UV-shielded clouds CO

5. Molecular freeze-out Freeze-out versus Free-fall Walmsley 1991 van Dishoeck et al. 1993

5. Molecular freeze-out C 17 O(1-0) emission (Caselli et al. 1999) CO hole dust peak Dust emission in a pre-stellar core (Ward-Thompson et al. 1999) 0.05 ly Molecules freeze out onto dust grains in the center of prestellar cores  Dust grain

D-fractionation increases towards the core center (~0.2; Caselli et al. 2002; Crapsi et al. 2004, 2005) N 2 D + (2-1) N 2 H + (1-0) Dust emission in the pre-stellar core L1544 (Ward-Thompson et al. 1999) See also Bacmann et al. 2002, 2003; Bergin et al. 2002; Lee, Evans et al Molecular freeze-out

Friesen et al  m N 2 H + (1-0)

5. Molecular freeze-out Crapsi, Caselli, Walmsley & Tafalla 2007 On size scale of  800 AU: No NH 3 freeze-out at n H ~ 10 6 cm -3 ! The gas temperature drops to ~6 K in the central 1000 AU (  4  larger dust emissivity; Keto & Caselli 2008) The deuterium fractionation is ~0.4 in the central 3000 AU (larger than in N 2 H + ; see also Pillai et al. 2006, Fontani et al. 2008; Busqet et al. 2010) Loss of specific angular momentum towards the small scales N(NH 3 VLA N(NH 2 PdBI 700 AU 1400 AU

H HD  H 2 D + + H K H 2 D + / H 3 + increases when T kin < 20 K + when the abundance of gas phase neutral species (in particular CO and O) decreases (Dalgarno & Lepp 1984; Roberts & Millar 2000). N 2  N 2 D + + H 2 H 2 D + + CO  DCO + + H 2 Watson 1974 Millar et al Deuterium fractionation

Evidences of freeze-out: deuterium fractionation 6. Deuterium fractionation o- H 2 D + CSO N 2 D + (2-1) IRAM N 2 H + (1-0) IRAM Vastel et al Caselli et al. 2003, 2008 The H 2 D + and N 2 D + lines trace the same region (size ~ 5000 AU)  Only models including all multiply deuterated forms of H 3 + can reproduce these data (Roberts et al. 2003; Walmsley et al. 2004; Aikawa et al. 2005)

Evidences of freeze-out: deuterium fractionation 6. Deuterium fractionation Flower, Pineau des Forêts, Walmsley 2004 L429 L694-2 L1544 L183 B E NGC2264G NGC1333 DCO + L1521F B1 OphD L1517B TMC-1C Caselli et al See also Pagani et al Sipilä et al The ortho-to-para ratio:

Evidences of freeze-out: deuterium fractionation 7. The Herschel view 1.3 mm continuum map from Ward-Thompson et al. (1999) Caselli et al. 2010, submitted Caselli et al. 2010, in press

Evidences of freeze-out: deuterium fractionation 7. The Herschel view Caselli et al. 2010

Evidences of freeze-out: deuterium fractionation x(o-H 2 O) ~ 2  within the central ~7000 AU ~ 5  at larger radii Peak Using Keto & Caselli (2010) RT models : abundance ~ at ~0.1 pc from center 7. The Herschel view (very similar to what found by van der Tak et al in high-mass star forming regions)

Evidences of freeze-out: deuterium fractionation 7. The Herschel view

Evidences of freeze-out: deuterium fractionation Summary 1.Prestellar cores (PCSs) are the earliest phases (initial conditions) of star/planet formation. Ideal laboratories. 2.Severe (> 90%) freeze-out of CO (CS, H 2 CO, CH 3 OH) at densities above a few  10 4 cm N 2 H + starts to freeze-out at n H > 10 5 cm No clear evidence of NH 3 freeze-out at large n H (Herschel needed!), as well as CN, HCN and HNC. 5.N 2 D + and deuterated ammonia peak toward the coldest and densest zones (t freeze < 1000 yr) (ALMA). 6.H 2 D + is spatially coincident with N 2 D + (i.e. it does not trace “molecular holes”). D 2 H + observations needed. 7.PSCs H 2 O abundances are low (~ ) within cores (steep gradients?). Chemical models need revision.

Evidences of freeze-out: deuterium fractionation What’s next? 1.WISH GT: Higher sensitivity spectrum toward L Herschel OT1: High sensitivity water spectra toward TMC-1, L1689B, and L183 (30 h HIFI, Aikawa, Caselli, Tafalla et al.): Test intra-cloud variations of H 2 O abundance in the Taurus molecular cloud Compare the Taurus abundance with that of other clouds with different physical conditions. Link physical conditions with H 2 O observations to understand chemical processes.

Evidences of freeze-out: deuterium fractionation What’s next? PSC properties in cluster forming regions  Oph A seen in 850  m (color scale), N 2 H + (4-3) (green contours) and ortho-H 2 D + ( ) (blue contours). Di Francesco et al., in prep. With Herschel/HIFI (Di Francesco, Caselli, Jørgensen +): ortho-NH 3 ( ), N 2 H + (6-5) H 2 O( ) para-D 2 H + ( ) ortho-D 2 H + ( )

Evidences of freeze-out: deuterium fractionation Spitzer IRAC 8μm MJy Sr -1 Mass Surface Density g cm -2 (Butler & Tan 2009; Peretto & Fuller 2009) 3´ What’s next? PSCs in high-mass star forming regions

Evidences of freeze-out: deuterium fractionation A.Dense cores and their molecular envelopes: HIFI simultaneous observations of ortho-H 2 O( ) and ortho-NH 3 ( ) + N 2 H + (6-5). B.The atomic layer: [CII] 158  m maps with HIFI. C.The extinction low + [OI]63  m: PACS imaging spectroscopy between 51 and 73  m Multilayer spectroscopy of 8/24/70  m-dark pre-star-cluster clumps in IRDCs (31 h, HIFI+PACS; Caselli, Tan, Beltran et al.) What’s next? PSCs in high-mass star forming regions