Sebastian T. B. Goennenwein Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften M. Althammer, F. D. Czeschka, J. Lotze, S. Meyer, M. Schreier,

Slides:



Advertisements
Similar presentations
Chudnovsky Symposium, Mar.13&14, Phys. Rev. B 33, 251 (1986) citations.
Advertisements

Fast Nuclear Spin Hyperpolarization of Phosphorus in Silicon E. Sorte, W. Baker, D.R. McCamey, G. Laicher, C. Boehme, B. Saam Department of Physics, University.
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Collinear interaction of photons with orbital angular momentum Apurv Chaitanya N Photonics science Laboratory, PRL.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Ultrahigh-resolution spin-resolved ARPES of novel low-dimensional systems Seigo Souma Tohoku University May 31, 2010 A. Takayama, K. Sugawara, T. Sato,
New Directions in Energy Research or a Magnetic Quirk?
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Heattronics? Thermomagnotronics? Nanospinheat ? Calefactronics? Fierytronics? Coolspintronics? Thermospintronics? ? What I learned in kinder garden: Fire.
Spin transport in spin-orbit coupled bands
Hiroyuki Inoue Electric manipulation of spin relaxation in a film using spin-Hall effect K. Ando et al (PRL in press)
X-ray Imaging of Magnetic Nanostructures and their Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way……
LCLS Studies of Laser Initiated Dynamics Jorgen Larsson, David Reis, Thomas Tschentscher, and Kelly Gaffney provided LUSI management with preliminary Specifications.
Optical study of Spintronics in III-V semiconductors
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
Research fueled by: MRS Spring Meeting San Francisco April 28th 2011 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Topological thermoelectrics.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
School of Physics and Astronomy, University of Nottingham, UK
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Hall detection of a ppm spin polarization Dazhi Hou 1,2, ⋆, Z. Qiu 1, R. Iguchi 3, K. Sato 1, K. Uchida 2,3,4, G. E. W. Bauer 1,3,5, E. Saitoh 1,2,3,6.
Spintronic Devices and Spin Physics in Bulk Semiconductors Marta Luengo-Kovac June 10, 2015.
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Picosecond needs for phonon dynamics in nanoscience / energy science Yuelin Li, X-ray Science Division, Argonne National Laboratory.
Thermoelectrics of Cu 2 Se: Organic-Inorganic Hybrid Approaches to zT Enhancement David Brown, Tristan Day and Dr. G. Jeffrey Snyder.
Persistent spin current in mesoscopic spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.)
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Spin-dependent transport in the presence of spin-orbit interaction L.Y. Wang a ( 王律堯 ), C.S. Tang b and C.S. Chu a a Department of Electrophysics, NCTU.
© Copyright National University of Singapore. All Rights Reserved. ENHANCING THERMOELECTRIC EFFICIENCY FOR NANOSTRUCTURES AND QUANTUM DOTS Jian-Sheng Wang.
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
1 Acoustic ↔ Electromagnetic Conversion in THz Range Alex Maznev Nelson group meeting 04/01/2010.
Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National.
● Problem addressed: Mn-doped GaAs is the leading material for spintronics applications. How does the ferromagnetism arise? ● Scanning Tunneling Microscopy.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Magnetization dynamics
Phonon spectrum measured in a 1D Yukawa chain John Goree & Bin Liu.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Research fueled by: 8th International Workshop on Nanomagnetism & Superconductivity Coma-ruga July 2 nd, 2012 Expecting the unexpected in the spin Hall.
Low–field NMR (or MRI) Images of Laser polarized Noble Gas.
Effect of Charging on Thermal Noise Gregory Harry Massachusetts Institute of Technology - Core Optics and Suspensions Working Groups - March 19, 2004 –
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Microscopic theory of spin transport
The Structure and Dynamics of Solids
Single Electron Spin Resonance with Quantum Dots Using a Micro-magnet Induced Slanting Zeeman Field S. Tarucha Dep. of Appl. Phys. The Univ. of Tokyo ICORP.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
J.S. Colton, Universal scheme for opt.-detected T 1 measurements Universal scheme for optically- detected T 1 measurements (…and application to an n =
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
Experiments to probe the inverse Spin-Hall Effect in GaAs U. Pfeuffer, R. Neumann, D. Schuh, W. Wegscheider, D. Weiss 7. June 2008 University of Regensburg.
Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge W. S. Cho and J. A. C. Bland Cavendish Laboratory, University of Cambridge, UK.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
1 NTNU, November 2008Norwegian University of Science and Technology (NTNU), June 2009 Scattering Theory of Charge-Current Induced Magnetization Dynamics.
Spin-Orbit Torques from Interfacial Rashba-Edelstein Effects
Yu-Sheng Ou, PhD Ezekiel Johnston-Halperin’s group
Thermoelectric Modules (TEM)
MRSEC at the University of Utah;
Translating Spin Seebeck Effect Physics into Practice
Science, 2010, 330, Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok,
LUSI Status and Early Science
Information Storage and Spintronics 18
Presentation transcript:

Sebastian T. B. Goennenwein Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften M. Althammer, F. D. Czeschka, J. Lotze, S. Meyer, M. Schreier, M. Weiler, S. Geprägs, M. Opel, H. Huebl, R. Gross, Walther-Meißner-Institut E. Saitoh and G.E.W. Bauer & groups Institute for Materials Research, Tohoku U, Japan, Kavli Institute of NanoScience, TU Delft, NL J. Xiao & group, Fudan U, Shanghai Y. Tserkovnyak & group, UCLA, USA M. Kläui & group, Uni Mainz Financial support: Deutsche Forschungsgemeinschaft via SPP 1538 “SpinCAT” (GO 944/4) and Excellence Cluster NanoSystems Initiative Munich Spin Currents in Magnetic Insulator / Normal Metal Heterostructures

Spin electronics = putting a spin to electronics ? electron = electronics (charge-tronics): … ONLY charge … charge currents in electrical conductors charge current sources charge current detectors charge amplification spin charge Intel Core i7 IBM spin-tronics: … ONLY spin … spin currents in “angular momentum conductors” spin currents ? spin current sources ? spin current detectors ? spin current gain ? 2 magneto-electronics: … charge AND spin … spin-polarized currents in electrical conductors

From charge currents to spin currents

Volta Schulhistorische Sammlung, Bremerhaven Ørsted wikipedia

From charge currents to spin currents ? ? Intel Core i7 5  spin current source ?  spin current meter ? …this talk: F/N hybrids !

From charge currents to spin currents ? ? Intel Core i7 6  spin current source ?  spin current meter ? J S can also flow in electrical insulators, as a magnon (spin) current !

spin current detection (in metals with s-o coupling)

The spin Hall effect (SHE) : spin – charge current conversion 8 Spin Hall effect spin-orbit coupling: interaction between spin and charge motion spin Hall angle  SHE parameterizes charge current  spin current conversion efficiency direct spin Hall effect (SHE) inverse spin Hall effect (ISHE) charge current spin current spin current charge current

Direct spin Hall effect in GaAs 9 Kerr microscopy („spin imaging“) Kato et al., Science 306, 1910 (2004). -J c JsJs 

The spin Hall effect (SHE) : spin – charge current conversion 10 Spin Hall effect spin-orbit coupling: interaction between spin and charge motion spin Hall angle  SHE parameterizes charge current  spin current conversion efficiency direct spin Hall effect (SHE) inverse spin Hall effect (ISHE) charge current spin current spin current charge current

iSHE in Metallic F/N Nanostructures 11 Aluminium: Valenzuela & Tinkham, Nature 442, 176 (2006). detection of diffusive spin current via inverse spin Hall effect JsJs -J c JsJs Al FM1 L SH Gold :  SHE = Platinum :  SHE =0.013 … 0.11 (0.16) Bi, Bi/Ag, Ta :  SHE =0.1 … 0.3 Valenzuela & Tinkham, Nature 442, 176 (2006). Mosendz et al., Phys. Rev. Lett. 104, (2010). Liu et al., Science 336, 555 (2012). Niimi et al., Phys. Rev. Lett. 109, (2012). …and many more …

iSHE in Metallic F/N Nanostructures 12 Aluminium: Valenzuela & Tinkham, Nature 442, 176 (2006). detection of diffusive spin current via inverse spin Hall effect JsJs -J c JsJs Al FM1 L SH Gold :  SHE = Platinum :  SHE =0.013 … 0.11 (0.16) Bi, Bi/Ag, Ta :  SHE =0.1 … 0.3 Valenzuela & Tinkham, Nature 442, 176 (2006). Mosendz et al., Phys. Rev. Lett. 104, (2010). Liu et al., Science 336, 555 (2012). Niimi et al., Phys. Rev. Lett. 109, (2012). …and many more … take away: SHE enables “simple” experimental spin current detection (… given the spin Hall angle  SHE and the spin diffusion length SF are known ! )

From charge currents to spin currents 13 Volta ISHE Schulhistorische Sammlung, Bremerhaven Ørsted Hirsch (1999) ?

From charge currents to spin currents 14 Volta ISHE Schulhistorische Sammlung, Bremerhaven Ørsted Hirsch (1999) magnetic interface ?

spin current generation (in ferromagnet / metal hybrid structures)

Spin currents in hybrid structures ferromagnet

Spin currents in hybrid structures „normal“ metal ferromagnet

Spin currents in hybrid structures Weiler et al., PRL 111, (2013). „normal“ metal ferromagnet (out of equilibrium)

Spin currents in hybrid structures „normal“ metal ferromagnet (out of equilibrium) Weiler et al., PRL 111, (2013).

Spin currents in hybrid structures coherent phonons : Bömmel & Dransfeld, PR 117, 1245 (1960). Weiler et al., PRL 106, (2011). PRL 108, (2012). Uchida et al., Nature 455, 778 (2008). Jaworski et al., Nature Mater. 9, 898 (2010). Uchida et al., Nature Mater. 9, 894 (2010). Weiler et al., PRL 108, (2012). Gepraegs et al., APL 101, (2012). Schreier et al., PRB 88, (2013). Schreier et al., APL 103, (2013). Roschewsky et al., APL 104, (2014). Geprägs et al.,arXiv: Tserkovnyak et al., PRL 88, (2002). Saitoh et al., APL 88, (2006). Mosendz et al., PRL 104, (2010). Czeschka et al., PRL 107, (2011). Bai et al., PRL 114, (2015). Weiler et al., PRL 108, (2012). Huang et al., PRL109, (2012). Nakayama et al., PRL 110, (2013). Chen et al., PRB 87, (2013). Althammer et al., PRB 87, (2013). Vlietstra et al., PRB 87, (2013). Hahn et al., PRB 87, (2013). Lotze et al., PRB 90, (2014). Weiler et al., PRL 111, (2013).

Spin currents in hybrid structures coherent phonons : Bömmel & Dransfeld, PR 117, 1245 (1960). Weiler et al., PRL 106, (2011). PRL 108, (2012). Weiler et al., PRL 108, (2012). Huang et al., PRL109, (2012). Nakayama et al., PRL 110, (2013). Chen et al., PRB 87, (2013). Althammer et al., PRB 87, (2013). Vlietstra et al., PRB 87, (2013). Hahn et al., PRB 87, (2013). Lotze et al., PRB 90, (2014). Weiler et al., PRL 111, (2013). Uchida et al., Nature 455, 778 (2008). Jaworski et al., Nature Mater. 9, 898 (2010). Uchida et al., Nature Mater. 9, 894 (2010). Weiler et al., PRL 108, (2012). Gepraegs et al., APL 101, (2012). Schreier et al., PRB 88, (2013). Schreier et al., APL 103, (2013). Roschewsky et al., APL 104, (2014). Geprägs et al.,arXiv: Tserkovnyak et al., PRL 88, (2002). Saitoh et al., APL 88, (2006). Mosendz et al., PRL 104, (2010). Czeschka et al., PRL 107, (2011). Bai et al., PRL 114, (2015).

Spin Seebeck Effect in magnetic insulator / metal hybrid structures

longitudinal SSE magnetic insulator / N ( YIG / Pt ) Uchida, Saitoh et al., Nature 455, 778 (2008). Nature Mater. 9, 894 (2010). APL 97, (2010). …. Spin Seebeck effect (SSE)

longitudinal SSE magnetic insulator / N ( YIG / Pt ) Uchida, Saitoh et al., Nature 455, 778 (2008). Nature Mater. 9, 894 (2010). APL 97, (2010). …. M Spin Seebeck effect (SSE)

Weiler et al., PRL 108, (2012). Schreier et al., APL 103, (2013). Roschewsky et al., APL 104, (2014). heat baths (local) laser heating Joule current heating many groups around the world use this „thermoelectric approach“

Spatially resolved spin Seebeck experiments … inspired by EPFL, e.g.: Gravier, Ansermet et al., EPL 77, (2007). YIG Pt

Spatially resolved spin Seebeck experiments … inspired by EPFL, e.g.: Gravier, Ansermet et al., EPL 77, (2007).

Optical imaging ( = reflected intensity ) 1 pixel = 12.5  m  12.5  m 1 pixel = 2  m  2  m YIG Pt

Optical imaging ( = reflected intensity ) 1 pixel = 12.5  m  12.5  m 1 pixel = 2  m  2  m

Spatially resolved spin Seebeck effect in YIG/Pt bilayers optical H

Spatially resolved spin Seebeck effect in YIG/Pt bilayers optical H V ISHE  spin Seebeck effect

SSE in YIG(20nm)/Pt(7nm) bilayer  local emf H  0 H =  70 mT room temperature

H  local, bipolar, magnetically controllable emf  0 H =  70 mT room temperature SSE in YIG(20nm)/Pt(7nm) bilayer

H Weiler et al., PRL 108, (2012). SSE in YIG(20nm)/Pt(7nm) bilayer

Weiler et al., PRL 108, (2012). SSE in YIG(20nm)/Pt(7nm) bilayer

Weiler et al., PRL 108, (2012). Spin Seebeck effect: thermally driven spin currents give rise to local, bipolar, M-controllable emf electrically detected magnetometry of magnetic insulators ? SSE mechanism SSE in YIG(20nm)/Pt(7nm) bilayer

Time-resolved SSE … how quickly can we modulate the laser power and still observe a “DC” SSE signal ?

Time-resolved SSE Garching: YIG(55nm)/Pt(<20nm) samples SSE signal unaltered up to at least 30MHz  SSE time constant < 5 ns Roschewsky et al., APL 104, (2014). Kaiserslautern: YIG(6700nm)/Pt(10nm) sample SSE signal exhibits time dep.  SSE time constant of 570 ns Agrawal et al., PRB 89, (2014).

Spin currents: towards (more complex) spin textures spin current (e.g., SSE) = ferri- magnet … do spin currents „simply“ mirror the net magnetization ?

Spin Seebeck Effect in GdIG/Pt Geprägs et al., arXiv:

Conclusions pure spin currents spin Hall effect inverse spin Hall effect spin Seebeck effect (SSE): spin-current induced thermopower voltage in a nonmagnetic metal (Pt), governed by M in insulating FM (YIG) … what is the SSE time constant ? … spin currents DO NOT „simply“ mirror the net magnetization