Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
GEANT4 Simulations of TIGRESS
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
197 A u at the End of the Dragon Evan O’Connor University of PEI August 2 nd, 2006.
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Ion Beam Analysis techniques:
June 2006 Paul Mumby-Croft University of Yor k 1Page TACTIC: A New Detector for Nuclear Astrophysics An update for the ACTAR meeting, Daresbury, UK
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
Studying the  p-process at ATLAS Catherine M. Deibel Joint Institute for Nuclear Astrophysics Michigan State University Physics Division Argonne National.
Jennifer Fallis - ERAWAST Workshop II Using beams of reclaimed 44 Ti to explore the mechanism of core collapse in supernovae Jennifer Fallis TRIUMF.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Isobarentrennung bei Teilchenenergien unterhalb 1 MeV/amu mit einem  TOF Detektor Peter Steier, Robin Golser, Walter Kutschera, Alfred Priller, Christof.
NucleoSynthesis of Galactic 26 Al 26 Al gs +p, 26 Al m +p, 25 Al+p Resonances Peter Parker, Yale University Catherine Deibel, Rachel Lewis, Anuj Parikh,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Fluorescence from Air in Showers (FLASH) J. Belz 1, Z. Cao 2, P. Chen 3*, C. Field 3, P. Huentemeyer 2, W-Y. P. Hwang 4, R. Iverson 3, C.C.H. Jui 2, T.
Status of TACTIC: A detector for nuclear astrophysics Alison Laird University of York.
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
Accurate  Spectroscopy for Ultracold Neutrons Jeff Martin University of Winnipeg See also: J.W. Martin et al, Phys. Rev. C (2006) J.W. Martin.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Superheavy Element Studies Sub-task members: Paul GreenleesJyväskylä Rodi Herzberg, Peter Butler, RDPLiverpool Christophe TheisenCEA Saclay Fritz HessbergerGSI.
ANASEN - Array for Nuclear Astrophysics Studies with Exotic Nuclei Silicon-strip detector array backed with 2-cm-thick CsI Gas proportional counter for.
Study of the  -decay of 12 B Proposal to INTC 25th February 2002 SpokespersonH.O.U. Fynbo ContactpersonU.C. Bergmann.
Astrophysics with DRAGON: The 26g Al (p,γ) 27 Si Reaction Heather Crawford a,1 for the DRAGON Collaboration b a Simon Fraser University, Burnaby, B.C.,
Direct measurement of 12 C + 4 He fusion cross section at Ecm=1.5MeV at KUTL H.Yamaguchi K. Sagara, K. Fujita, T. Teranishi, M. taniguchi, S.Liu, S. Matsua,
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
Abstract The 13 N(p,γ) 14 O reaction is very important for our understanding of explosive astrophysical sites, such as novae and supernovae. This reaction.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
ハイパー核ガンマ線分光用 磁気スペクトロメータ -SksMinus- 東北大学 大学院理学研究科 白鳥昂太郎 ATAMI.
Absolute resonance strength measurements of the 22 Na(p,  ) reaction Chris Wrede Center for Experimental Nuclear Physics and Astrophysics University of.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Mats Lindroos Measuring difficult reaction rates involving radioactive beams: A new approach John D’Auria, Mats Lindroos, Jordi Jose and Lothar Buchmann.
CJ Barton Department of Physics INTAG Meeting – GSI – May 2007 Large Acceptance Bragg Detector at ISOLDE.
Mariano Carmona Gallardo Grupo de Física Nuclear Experimental Instituto de Estructura de la Materia CSIC-Madrid O. Tengblad 1, B.S. Nara Singh 2, M. Hass.
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
TRIUMF Canada’s national laboratory for nuclear and particle physics Direct Measurement of the 21 Na(p,γ) 22 Mg Reaction: Resonance Strengths and γ-γ Analysis.
First application of ranging-out method and hybrid 3Hen counter at ISAC-1: measurement of absolute beta-delayed neutron rates (I βn ) for Ga and Ge isotopes.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Enter The DRAGON Investigating the 13 C(p,γ) 14 N reaction Aaron M. Bebington (University Of Surrey, Guildford, Surrey, England) ISAC talk – 24 th November.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
CAWONAPS - Dec 10th, S(p,  ) 34 Cl Constraining nova observables: Direct measurement of 33 S(p,  ) 34 Cl in inverse kinematics Jennifer Fallis,
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER Wilton Catford University of Surrey, UK & SHARC collabs.
ЭКСПЕРИМЕНТ R3B РЕАКЦИИ С РЕЛЯТИВИСТКИМИ РАДИОАКТИВНЫМИ ПУЧКАМИ НА УСКОРИТЕЛЬНОМ КОМПЛЕКСЕ FAIR (GSI, DARMSTADT, GERMANY) Е.М. МАЕВ.
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal to the ISOLDE and Neutron Time-of-Flight Committee Study of the beta delayed particle emission from.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
Presolar Grains Bulk of material in the solar system is a mixture from a large number of stellar source---mixing in interstellar medium or during solar.
Prototype production and test
1. Introduction Secondary Heavy charged particle (fragment) production
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Recoil charge state distributions in 12C(a,g)16O at DRAGON
Letter of Intent: XXXXI
Elastic alpha scattering experiments
Direct Measurement of the 8Li + d reactions of astrophysical interest
Presentation transcript:

Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Collaboration L. Buchmann, J. Caggiano, J.M. D’Auria, B. Davids, A. Hussein, D.A. Hutcheon, D. Ottewell, M.M. Pavan, C. Ruiz, G. Ruprecht, M. Trinczek, C. Vockenhuber DRAGON collaboration at TRIUMF, Vancouver, BC, Canada A. Chen, C. Ouellet, J. Pearson McMaster University, Hamilton, ON, Canada M. Paul Hebrew University / Weizmann Institute, Israel W. Kutschera, A. Wallner University of Vienna, Austria D. Frekers University of Münster, Germany A.M. Laird, R. Lewis University of York, England H. Crawford, L. Fogarty, E. Ó’Conner, B. Wales, Summer students from Canada and Ireland poster – No Number B. Laxdal, M. Marchetto, K. Jayamana, ISAC operators TRIUMF staff, Vancouver, BC, Canada

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Role of 44 Ti in Astrophysics laboratory half-life of /- 1.0 years decay through electron capture, if ionized half-life becomes longer detected in space by  -ray satellites and in pre-solar grains produced in supernova detection of relatively recent supernovae alpha-rich freeze-out just above the collapsing core observed quantity of 44 Ti depends critically on ‘mass-cut’ understanding of production requires reliable reaction rates dominated by 4 reactions: 3  process 44 Ti( ,p) 47 V 45 V(p  ) 46 Cr 40 Ca(  ) 44 Ti

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Previous measurements of 40 Ca(  ) 44 Ti prompt  ray measurements in the 1970s E. L. Cooperman et al., Nucl. Phys. A 284 (1977) 163 W. R. Dixon et al., Phys. Rev. C 15 (1977) 1896; Can. J. Phys. 58 (1980) 1360 resonance strength of a few isolated resonances recent AMS measurement H. Nassar et al., PRL 96 (2006) integral measurement of a large energy range discrepancy by a factor of ~5

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Level scheme H. Nassar et al., Nucl. Phys. A 758 (2005) 411c

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Astrophysical Reaction Rate Reaction rate: Resonance strength: Measured Yield ( 44 Ti / 40 Ca ): Y(  = 1 eV ) ~ 10 –11

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Experiment at DRAGON alpha-rich freeze-out takes place at a large temperature regime  cover a large energy range ( E cm ~ 2.0 – 4.2 MeV ) several narrow resonances contribute to the yield  ‘thin’ target for sufficient resolution  ’thick’ target to apply thick target yield  energy loss in the gas target  E cm ~ 10 keV / Torr 1 Torr: 220 energy steps 8 Torr: 30 energy steps

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Experiment at DRAGON Advantage: direct detection of recoils ( 44 Ti) and  rays measurement of single resonances high efficiency windowless He gas target + BGO  detector array acceptance: < 20 mrad ( 44 Ti recoils ~ 6 mrad) high suppression of beam recoil separator~10 7 detector ~10 4  coincidence ~10 3  measurements of  < meV possible

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Experiment at DRAGON Challenges: 40 Ca beam from Off-line Ion Source 2+ required for acceptance at RFQ accelerator (A/q < 30) 40 Ar contamination (can be measured with ion chamber) suppression of 40 Ca depends on selected charge state ( ~10 6 – ) A/q ambiguities 44 Ti 11+ ↔ 40 Ca 10+ charge state distribution after the gas target acceptance of recoil spectrometer identification of 44 Ti ion chamber, TOF

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June What we measure 40 Ca beam on target elastically scattered He atoms with collimated SB detectors beam contamination with ion chamber produced 44 Ti recoils 44 Ti detected at the ion chamber charge state fraction after the target detection efficiencies  rays in coincidence with 44 Ti energies and multiplicity z-position along the gas target

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June DRAGON windowless Gas Target Target thickness 1 – 10 Torr H 2 or He gas ~10 18 atoms / cm 2 Elastic monitor detectors: detect scattered gas particles Charge State Booster (CSB): 100 nm SiN foil (30  g/cm 2 ) increase mean charge state by ~2 charge state distribution independent of position along the path in the target CSB gas foil

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June BGO Gamma detectors surrounding gas target geometrical efficiency of ~ 90 % effective efficiency depends on  energy and multiplicity  determined from GEANT simulations and point source studies DRAGON  detector Array

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Recoil Mass Separator Inverse Kinematics: Energy spread a few percent  achromatic system Cone angle a few 10 mrad  large gaps, large detectors Energy of recoils < beam energy  problem of energy loss tails

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Particle Identification entrance window 130 µg/cm² Mylar, 50 µg/cm² PP, µg/cm² SiN diameter 5 cm energy resolution: ~ 1 % for 1 MeV/u 40 Ca Cathode Frisch Grid Anode 1Anode 2Anode 3 Ionization chamber

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Beam Contamination Hybrid-surface ion source 14 IC Anode 2 IC Anode 1 +

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Ti identification Ionization chamber singles

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Ti identification Ionization chamber –  ray coincidence coincidencesY ~ 1 x

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Ti identification Time-of-Flight through Spectrometer

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Beam Suppression

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Charge State Distribution of 44 Ti

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Charge State Distribution of 44 Ti

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Charge State Distribution of 44 Ti

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Charge State Distribution of 44 Ti

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Charge State Distribution of 44 Ti

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Charge State Distribution of 44 Ti

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Excitation function 40 Ca(  ) 44 Ti 1.0 T 9 temperature regime 2.8 T 9 preliminary !

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June BGO  ray spectrum MeV 40 Ca

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June  coincidence measured  ray data will be used to estimate BGO efficiency

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Summary We measured the 40 Ca(  ) 44 Ti reaction at the recoil mass spectrometer DRAGON in the energy regime of supernova nucleosynthesis (T 9 ~ 1 – 2.8) A first preliminary analysis gives a total 44 Ti yield between prompt  ray and AMS data, a detailed analysis including  ray data and GEANT simulation for BGO efficiency will follow Additionally, we learned a lot: could demonstrate to measure resonance strength for astrophysics in mass 40 region measure an excitation function over a large energy range  important for reactions with radioactive beams

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June

R. Diehl et al. (2005)

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June IC spectra 44 Ti 10+ singles 44 Ti Ca keV/u 8 Torr He Y ~ 4 x

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June IC spectra 44 Ti Ti 10+ coincidences 40 Ca keV/u 8 Torr He Y ~ 4 x

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June IC spectra 44 Ti Ti 9+ singles 40 Ca keV/u 8 Torr He Y ~ 2 x

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June IC spectra 44 Ti Ti 9+ coincidences 40 Ca keV/u 8 Torr He Y ~ 2 x

Christof Vockenhuber 40 Ca(  ) 44 Ti at DRAGON NIC-IX June Charge State Distribution of 44 Ti without charge state booster foil