Warm Up Lesson Presentation Lesson Quiz Holt Geometry.

Slides:



Advertisements
Similar presentations
Introduction Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details, and even bicycle frames. Isosceles.
Advertisements

Apply Triangle Sum Properties
Triangle Fundamentals
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
4-8 Isosceles and Equilateral Triangles Lesson Presentation
Holt CA Course Triangles Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
8.Bottom left corner at (0,0), rest of coordinates at (2, 0), (0, 2) and (2, 2) 9. Coordinates at (0,0), (0, 1), (5, 0) or (0,0), (1, 0), (0, 5) 10. Using.
Objectives Prove theorems about isosceles and equilateral triangles.
Holt McDougal Geometry 4-8 Isosceles and Equilateral Triangles Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles.
4.5 Isosceles and Equilateral Triangles. Isosceles Triangles At least two sides are of equal length. It also has two congruent angles. Base Angles Base.
Chapter 4 Congruent Triangles In this chapter, you will: classify triangles by their parts, apply the Angle Sum Theorem and the Exterior Angle Theorem,
1 4-5 Isosceles and Equilateral Triangles State and apply the Isosceles Triangle Theorem and its converse State and apply the corollaries for equilateral.
Isosceles and equilateral triangles
4-9 Isosceles and Equilateral Triangles
Section 4-4: The Isosceles Triangle Theorems
Section 4-5: Isosceles and Equilateral Triangles.
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
4-7 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
GEOMETRY 2-1 Triangles Warm Up Classify each angle as acute, obtuse, or right If the perimeter is 47, find x and the lengths of the three.
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Holt CA Course Triangles Vocabulary Triangle Sum Theoremacute triangle right triangleobtuse triangle equilateral triangle isosceles triangle scalene.
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Warm Up 1. Find each angle measure. True or False. If false explain.
Holt Geometry 4-8 Isosceles and Equilateral Triangles 4-8 Isosceles and Equilateral Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Applied Geometry Lesson: 6 – 4 Isosceles Triangles Objective: Learn to identify and use properties of isosceles triangles.
Warm Up 1. Find each angle measure. True or False. If false explain. 2. Every equilateral triangle is isosceles. 3. Every isosceles triangle is equilateral.
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Unit 4: Triangle Congruence 4.8 Isosceles and Equilateral Triangles (Part 2)
How to use and apply properties of isosceles triangles. Chapter 4.5GeometryStandard/Goal: 4.1.
Warm Ups Classify each angle Classify each angle Solve Each Equation x= x+105= x + 58 = x = 90.
Triangle Fundamentals
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
The Isosceles Triangle Theorems
4.7 Use Isosceles and Equilateral Triangles
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Isosceles Triangles Section 4.3.
Triangle Fundamentals
Section 4.5 isosceles & equilateral triangles
Pearson Unit 1 Topic 4: Congruent Triangles 4-5: Isosceles and Equilateral Triangles Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Triangle Fundamentals
4.9: Isosceles & equilateral triangles
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Triangle Fundamentals
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Apply properties of isosceles and equilateral triangles.
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Introduction Isosceles triangles can be seen throughout our daily lives in structures, supports, architectural details, and even bicycle frames. Isosceles.
4-9 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Triangle Fundamentals
4-8 Isosceles and Equilateral Triangles Lesson Presentation
Objectives Prove theorems about isosceles and equilateral triangles.
5.4 Vocabulary legs of an isosceles triangle vertex angle base
Isosceles and Equilateral Triangles
Isosceles and Equilateral Triangles
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Isosceles and Equilateral Triangles
Chapter 4 Congruent Triangles.
Warm Up 1. Find each angle measure. True or False. If false explain.
Naming Triangles Triangles are named by using its vertices.
5-7 Isosceles and Equilateral Triangles
4-8 Isosceles and Equilateral Triangles Warm Up Lesson Presentation
Isosceles and Equilateral Triangles
Objectives Prove theorems about isosceles and equilateral triangles.
Introduction to Triangles
4.4 The Isosceles Triangle Theorems Objectives: Legs/base Isosceles Triangle Th.
Presentation transcript:

Warm Up Lesson Presentation Lesson Quiz Holt Geometry

Warm Up 1. Find each angle measure. True or False. If false explain. 2. Every equilateral triangle is isosceles. 3. Every isosceles triangle is equilateral. 60°; 60°; 60° True False; an isosceles triangle can have only two congruent sides.

Objectives Prove theorems about isosceles and equilateral triangles. Apply properties of isosceles and equilateral triangles.

California Standards 12.0 Students find and use measures of sides and of interior and exterior angles of triangles and polygons to classify figures and solve problems. 15.0 Students use the Pythagorean theorem to determine distance and find missing lengths of sides of right triangles.

Vocabulary legs of an isosceles triangle vertex angle base base angles

Triangle

Triangle External Angle

Corollary: The measure of an exterior angle of a triangle is greater than the measure of either of its remote angles.

Triangle Angle Sum Thm.

Triangle Classification

A corollary is a theorem whose proof follows directly from another theorem. Here are two corollaries to the Triangle Sum Theorem.

Recall that an isosceles triangle has at least two congruent sides Recall that an isosceles triangle has at least two congruent sides. The congruent sides are called the legs. The vertex angle is the angle formed by the legs. The side opposite the vertex angle is called the base, and the base angles are the two angles that have the base as a side. 3 is the vertex angle. 1 and 2 are the base angles.

Isosceles Triangle

The bisector of the vertex angle of an isosceles triangle is the perpendicular bisector of the base.

Example 1: Finding the Measure of an Angle Find mF. mF = mD = x° Isosc. ∆ Thm. mF + mD + mA = 180 ∆ Sum Thm. Substitute the given values. x + x + 22 = 180 Simplify and subtract 22 from both sides. 2x = 158 Divide both sides by 2. x = 79 Thus mF = 79°

Example 2: Finding the Measure of an Angle Find mG. mJ = mG Isosc. ∆ Thm. Substitute the given values. (x + 44) = 3x Simplify x from both sides. 44 = 2x Divide both sides by 2. x = 22 Thus mG = 22° + 44° = 66°.

TEACH! Example 1 Find mH. mH = mG = x° Isosc. ∆ Thm. mH + mG + mF = 180 ∆ Sum Thm. Substitute the given values. x + x + 48 = 180 Simplify and subtract 48 from both sides. 2x = 132 Divide both sides by 2. x = 66 Thus mH = 66°

TEACH! Example 2 Find mN. mP = mN Isosc. ∆ Thm. Substitute the given values. (8y – 16) = 6y Subtract 6y and add 16 to both sides. 2y = 16 Divide both sides by 2. y = 8 Thus mN = 6(8) = 48°.

Equilateral Triangle

The following corollary and its converse show the connection between equilateral triangles and equiangular triangles.

Equiangular Triangle

Ex. 3: Using Properties of Equilateral Triangles Find the value of x. ∆LKM is equilateral. Equilateral ∆  equiangular ∆ The measure of each  of an equiangular ∆ is 60°. (2x + 32) = 60 2x = 28 Subtract 32 both sides. x = 14 Divide both sides by 2.

Ex. 4: Using Properties of Equilateral Triangles Find the value of y. ∆NPO is equiangular. Equiangular ∆  equilateral ∆ Definition of equilateral ∆. 5y – 6 = 4y + 12 Subtract 4y and add 6 to both sides. y = 18

TEACH! Example 3 Find the value of JL. ∆JKL is equiangular. Equiangular ∆  equilateral ∆ Definition of equilateral ∆. 4t – 8 = 2t + 1 Subtract 4y and add 6 to both sides. 2t = 9 t = 4.5 Divide both sides by 2. Thus JL = 2(4.5) + 1 = 10.

A coordinate proof may be easier if you place one side of the triangle along the x-axis and locate a vertex at the origin or on the y-axis. Remember!

Example 5: Using Coordinate Proof Prove that the segment joining the midpoints of two sides of an isosceles triangle is half the base. Given: In isosceles ∆ABC, X is the mdpt. of AB, and Y is the mdpt. of BC. 1 2 Prove: XY = AC.

Example 5 Continued Proof: Draw a diagram and place the coordinates as shown. By the Midpoint Formula, the coordinates of X are (a, b), and Y are (3a, b). By the Distance Formula, XY = √4a2 = 2a, and AC = 4a. Therefore XY = AC. 1 2

Prove ∆MNZ is isosceles. TEACH! Example 5 The coordinates of isosceles ∆ABC are A(0, 2b), B(-2a, 0), and C(2a, 0). M is the midpoint of AB, N is the midpoint of AC, and Z(0, 0), . Prove ∆MNZ is isosceles. x A(0, 2b) B (–2a, 0) C (2a, 0) y M N Z Proof: Draw a diagram and place the coordinates as shown.

Check It Out! Example 6 Continued By the Midpoint Formula, the coordinates. of M are (–a, b), the coordinates. of N are (a, b), and the coordinates of Z are (0, 0) . By the Distance Formula, MZ = NZ = √a2+b2 . So MZ  NZ and ∆MNZ is isosceles. x A(0, 2b) B(–2a, 0) C(2a, 0) y M N Z

Lesson Quiz: Part I Find each angle measure. 1. mR 2. mP Find each value. 3. x 4. y 5. x 28° 124° 6 20 26°

Lesson Quiz: Part II 6. The vertex angle of an isosceles triangle measures (a + 15)°, and one of the base angles measures 7a°. Find a and each angle measure. a = 11; 26°; 77°; 77°