The Solow Growth Model (Part Three)

Slides:



Advertisements
Similar presentations
The Solow Growth Model (Part One)
Advertisements

The Solow Growth Model (Part Two)
Lecture 4: The Solow Growth Model
mankiw's macroeconomics modules
The Solow Model and Beyond
1 Economic Growth Professor Chris Adam Australian Graduate School of Management University of Sydney and University of New South Wales.
mankiw's macroeconomics modules
Saving, Capital Accumulation, and Output
The Solow Model When 1st introduced, it was treated as more than a good attempt to have a model that allowed the K/Y=θ to vary as thus avoid the linear.
ECO 402 Fall 2013 Prof. Erdinç Economic Growth The Solow Model.
Economic Growth II: Technology, Empirics, and Policy
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. 4-1 CHAPTER 4 The Theory of Economic Growth.
The Solow Growth Model.
Chapter 7 learning objectives
Macroeconomics fifth edition N. Gregory Mankiw PowerPoint ® Slides by Ron Cronovich CHAPTER SEVEN Economic Growth I macro © 2002 Worth Publishers, all.
Review of the previous lecture The real interest rate adjusts to equate the demand for and supply of goods and services loanable funds A decrease in national.
1 Chp6: Long-Run Economic Growth Focus: Determinants of Long Run Growth Rate and Standard of Living Growth Accounting Neo-Classical Growth Model Endogenous.
Chapter 4: Consumption, Saving , and Investment
In this chapter, we learn:
Chapter 7: Economic Growth. Supply of Goods Production Function: Y = F(K, L) Assume constant returns to scale: zY = F(zK, zL) Express in labor units:
M ACROECONOMICS C H A P T E R © 2008 Worth Publishers, all rights reserved SIXTH EDITION PowerPoint ® Slides by Ron Cronovich N. G REGORY M ANKIW Economic.
Economic Growth: The Solow Model
CHAPTER 11 © 2006 Prentice Hall Business Publishing Macroeconomics, 4/e Olivier Blanchard Saving, Capital Accumulation, and Output Prepared by: Fernando.
Chapter 4 Slide 1 Table 4-1 page 78 International Differences in the Standard of Living, 1997 Slide 2 Figure 4-2 page 80 The Population Function Slide.
Saving, Capital Accumulation, and Output The Long Run
MANKIW'S MACROECONOMICS MODULES
Economic Growth: Malthus and Solow
1 Macroeconomics Lecture 3-4 Economic Growth, Solow Growth Model (Mankiw: Macroeconomics, Chapter 4) Institute of Economic Theories - University of Miskolc.
Saving, Capital Accumulation, and Output The Long Run
Economic Growth I: the ‘classics’ Gavin Cameron Lady Margaret Hall
Macroeconomics & The Global Economy Ace Institute of Management Chapter 7 and 8: Economic Growth I Instructor Sandeep Basnyat
Chapter 7 learning objectives
IN THIS CHAPTER, YOU WILL LEARN:
Economic Growth I Economics 331 J. F. O’Connor. "A world where some live in comfort and plenty, while half of the human race lives on less than $2 a day,
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. Chapter 6 Economic Growth: Malthus and Solow.
Chapter 3 Growth and Accumulation
Economic Growth I CHAPTER 7.
ECONOMIC GROWTH Lviv, September Growth in Finland.
In this section, you will learn…
Economic Growth I Chapter Seven.
Economic Growth I: Capital Accumulation and Population Growth
Solow ’ s Model (Modeling economic growth). Solow model I: Constant productivity Assumptions of the model Population grows at rate n L ’ = (1 + n)L Population.
WEEK IX Economic Growth Model. W EEK IX Economic growth Improvement of standard of living of society due to increase in income therefore the society is.
© 2003 Prentice Hall Business PublishingMacroeconomics, 3/eOlivier Blanchard Prepared by: Fernando Quijano and Yvonn Quijano 11 C H A P T E R Saving, Capital.
MACROECONOMICS © 2014 Worth Publishers, all rights reserved N. Gregory Mankiw PowerPoint ® Slides by Ron Cronovich Fall 2013 update Economic Growth I:
Ch7: Economic Growth I: Capital Accumulation and Population Growth
Solow’s Growth Model. Solow’s Economic Growth Model ‘The’ representative Neo-Classical Growth Model: foc using on savings and investment. It explains.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. Chapter 6 Economic Growth: Solow Model.
CHAPTER 7 Economic Growth I slide 0 Econ 101: Intermediate Macroeconomic Theory Larry Hu Lecture 7: Introduction to Economic Growth.
Chapter 3 Growth and Accumulation Item Etc. McGraw-Hill/Irwin Macroeconomics, 10e © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved.
© The McGraw-Hill Companies, 2005 CAPITAL ACCUMULATION AND GROWTH: THE BASIC SOLOW MODEL Chapter 3 – second lecture Introducing Advanced Macroeconomics:
Solow’s Growth Model The mainline Classical Theory of Economic Growth.
Review of the previous lecture 1.The Solow growth model shows that, in the long run, a country’s standard of living depends positively on its saving rate.
Part IIB. Paper 2 Michaelmas Term 2009 Economic Growth Lecture 2: Neo-Classical Growth Model Dr. Tiago Cavalcanti.
National Income & Business Cycles 0 Ohio Wesleyan University Goran Skosples 7. Long-Run Growth.
THE THEORY OF ECONOMIC GROWTH 1. Questions How important is faster labor-growth as a drag on economic growth? How important is a high saving rate as a.
Growth and Accumulation Chapter #3. Introduction Per capita GDP (income per person) increasing over time in industrialized nations, yet stagnant in many.
Macroeconomics: Economic Growth Master HDFS
Chapter 7 Appendix: The Solow Growth Model
7. THE SOLOW MODEL Roberto Pasca di Magliano
An improvement in technology shifts
7. THE SOLOW MODEL OF GROWTH AND TECHNOLOGICAL PROGRESS
Chapter 7 Appendix: The Solow Growth Model
Economic Growth I.
Saving, Capital Accumulation, and Output
Economic Growth I: Capital Accumulation and Population Growth
Serge Coulombe, ECO – The Solow Model: theoretical analysis
Macroeconomics Exercise 3 (Ch. 8 and 9)
7. THE SOLOW MODEL OF GROWTH
Econ 101: Intermediate Macroeconomic Theory Larry Hu
Presentation transcript:

The Solow Growth Model (Part Three) The augmented model that includes population growth and technological progress.

Model Background As mentioned in parts I and II, the Solow growth model allows us a dynamic view of how savings affects the economy over time. We learned about the steady state level of capital and how a golden rule steady state level of capital can be achieved by setting the savings rate to maximize consumption per worker. We now augment the model to see the effects of population growth and technological progress.

Steady State Equilibrium By expanding our model to include population growth our model more closely resembles the sustained economic growth observable in much of the real world. To see how population growth affects the steady state we need to know how it affects the accumulation of capital per worker. When we add population growth (n) to our model the change in capital stock per worker becomes… Δk = i – (δ+n)k As we can see population growth will have a negative effect on capital stock accumulation. We can think of (δ+n)k as break-even investment or the amount of investment necessary to keep capital stock per worker constant. Our analysis proceeds as in the previous presentations. To see the impact of investment, depreciation, and population growth on capital we use the (change in capital) formula from above, Δk = i – (δ+n)k …substituting for (i) gives us, Δk = s*f(k) – (δ+n)k

Steady State Equilibrium with population growth Like depreciation, population growth is one reason why the capital stock per worker shrinks. At the point where both (k) and (y) are constant it must be the case that, Δk = s*f(k) – (δ+n)k = 0 …or, s*f(k) = (δ+n)k …this occurs at our equilibrium point k*. Investment Break-even Investment s*f(k) Investment Break-even investment (δ+n)k s*f(k*)=(δ+n)k* k k* At k* break-even investment equals investment.

The impact of population growth An increase in “n” Suppose population growth changes from n1 to n2. This shifts the line representing population growth and depreciation upward. Investment Break-even Investment (δ+n2)k (δ+n1)k At the new steady state k2* capital per worker and output per worker are lower The model predicts that economies with higher rates of population growth will have lower levels of capital per worker and lower levels of income. s*f(k) k k2* k1* …reduces k*

The efficiency of labour We rewrite our production function as… Y=F(K,L*E) where “E” is the efficiency of labour. “L*E” is a measure of the number of effective workers. The growth of labour efficiency is “g”. Our production function y=f(k) becomes output per effective worker since… y=Y/(L*E) and k=K/(L*E) With this augmentation “δk” is needed to replace depreciating capital, “nk” is needed to provide capital to new workers, and “gk” is needed to provide capital for the new effective workers created by technological progress.

At k* break-even investment equals investment. Steady State Equilibrium with population growth and technological progress Like depreciation and population growth, the labour augmenting technological progress rate causes the capital stock per worker to shrink. At the point where both (k) and (y) are constant it must be the case that, Δk = s*f(k) – (δ+n+g)k = 0 …or, s*f(k) = (δ+n)k …this occurs at our equilibrium point k*. Break-even investment (δ+n+g)k Investment Break-even Investment s*f(k*)=(δ+n)k* s*f(k) Investment At k* break-even investment equals investment. k k*

The impact of technological progress Suppose the worker efficiency growth rate changes from g1 to g2. This shifts the line representing population growth, depreciation, and worker efficiency growth upward. An increase in “g” Investment Break-even Investment (δ+n+g2)k (δ+n+g1)k s*f(k) At the new steady state k2* capital per worker and output per worker are lower. The model predicts that economies with higher rates of worker efficiency growth will have lower levels of capital per worker and lower levels of income. k k2* k1* …reduces k*

Effects of technological progress on the golden rule With technological progress the golden rule level of capital is defined as the steady state that maximizes consumption per effective worker. Following our previous analysis steady state consumption per worker is… c* = f(k*) – (δ + n + g)k* To maximize this… MPK = δ + n + g or MPK – δ = n + g That is, at the Golden Rule level of capital, the net marginal product of capital MPK – δ, equals the rate of growth of total output, n+g.

Steady State Growth Rates in the Solow Model with Technological Progress Variable Symbol Steady-State Growth Rate Capital per effective worker k=K/(E*L) Output per effective worker y=Y/(E*L)=f(k) Output per worker Y/L=y*E g Total output Y=y(E*L) n+g

Conclusion In this section we added changes in two exogenous variables (population and technological growth) to the Solow growth model. We saw that in steady state output per effective worker remains constant, output per worker depends only on technological growth, and that Total output depends on population and technological growth.