Gerd J. Kunde - LANL1 The FVTX Technology  Outline Overall Picture Silicon Detector –Geometry, Layout, Process Readout Chip –FNAL Chips, New Chip PHX.

Slides:



Advertisements
Similar presentations
Hybrid pixel: pilot and bus K. Tanida (RIKEN) 06/09/03 Si upgrade workshop Outline Overview on ALICE pilot and bus Requirements Pilot options Bus options.
Advertisements

A “BTeV” Hybrid Pixel Telescope for MTest David Christian May 4, 2007.
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
1 The Forward Silicon Vertex Detector Upgrade for the PHENIX Experiment at RHIC Douglas Fields University of New Mexico Feb. 12, 2011 Douglas Fields, WWND11,
July 10, 2008 PHENIX RPC review C.Y. Chi 1 RPC Front End Electronics On chamber discriminator  The strips  The CMS discriminator chips  The discriminator.
PHENIX Vertex Tracker Atsushi Taketani for PHENIX collaboration RIKEN Nishina Center RIKEN Brookhaven Research Center 1.Over view of Vertex detector 2.Physics.
Sept 25, 2008 PHENIX RPC review C.Y. Chi 1 RPC Front End Electronics On chamber discriminator  The strips  The CMS discriminator chips  The discriminator.
GLAST LAT Readout Electronics Marcus ZieglerIEEE SCIPP The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope Marcus.
GLAST LAT Readout Electronics Marcus ZieglerIEEE SCIPP The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope Marcus.
BTeV Trigger Architecture Vertex 2002, Nov. 4-8 Michael Wang, Fermilab (for the BTeV collaboration)
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
SiD EMCal Testbeam Prototype M. Breidenbach for the SiD EMCal and Electronics Subsystems.
David L. Winter for the PHENIX Collaboration PHENIX Silicon Detector Upgrades RHIC & AGS Annual Users' Meeting Workshop 3 RHIC Future: New Physics Through.
Jon S Kapustinsky 11/17/2010 Jon S Kapustinsky FVTX Commissioning Plan 1.71 Jon S Kapustinsky 1.
The FVTX Technology Outline Overall Picture Silicon Detector
David M. Lee Forward Vertex Detector Cost, Schedule, and Management Plan Participating Institutions Organizational plan Cost Basis R&D Costs.
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
ALICE Rad.Tolerant Electronics, 30 Aug 2004Børge Svane Nielsen, NBI1 FMD – Forward Multiplicity Detector ALICE Meeting on Rad. Tolerant Electronics CERN,
1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory.
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
Leo Greiner IPHC DAQ Readout for the PIXEL detector for the Heavy Flavor Tracker upgrade at STAR.
Muon trigger upgrades, missing since not aimed towards DOE funding PHENIX upgrades: view presented to DOE R&D $3.5M Construction $16.6M Au-Au p-p 200 Si-Si.
ASIC R&D at Fermilab R. Yarema October 30, Long Range Planning Committee2 ASICs are Critical to Most Detector Systems SVX4 – CDF & DO VLPC readout.
03/12/07 Jon S Kapustinsky LANL Jon S Kapustinsky, LANL Forward Vertex Detector Collaboration Meeting UNM, March 12, 2007 Outline: FVTX Overall Description.
Leo Greiner PIXEL Hardware meeting HFT PIXEL detector LVDS Data Path Testing.
Beam Tests of 3D Vertically Interconnected Prototypes Matthew Jones (Purdue University) Grzegorz Deptuch, Scott Holm, Ryan Rivera, Lorenzo Uplegger (FNAL)
ATLAS PIXEL SYSTEM OVERVIEW M. Gilchriese Lawrence Berkeley National Laboratory March 11, 1999.
The PHENIX Forward Silicon Vertex Tracker Eric J. Mannel IEEE NSS/MIC October 29, 2013.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Swadhin Taneja Stony Brook University On behalf of Vertex detector team at PHENIX Collaboration 112/2/2015S. Taneja -- DNP Conference, Santa Fe Nov 1-6.
1 07/10/07 Forward Vertex Detector Technical Design – Electronics DAQ Readout electronics split into two parts – Near the detector (ROC) – Compresses and.
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
Solid State Detectors for Upgraded PHENIX Detector at RHIC.
Forward Vertex Detector Cost, Schedule, and Management Plan Participating Institutions Organizational plan Cost Basis R&D Costs Cost Schedule.
FVTX Electronics (WBS 1.5.2, 1.5.3) Sergey Butsyk University of New Mexico Sergey Butsyk DOE FVTX review
U N C L A S S I F I E D Precision Tracking for the PHENIX Muon Arms Gerd J. Kunde ASI Prague 2005.
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Overview Technical Design Overview Design status.
Fermilab Silicon Strip Readout Chip for BTEV
PHENIX BNL 6/3/2005 Walter Sondheim, Jan Boissevain, Dave Lee PHENIX UPGRADES: SVTX + SI ENDCAPS.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
Pixel Atsushi Taketani RIKEN RIKEN Brookhaven Research Center 1.Overview of Pixel subsystem 2.Test beam 3.Each Components 4.Schedule 5.Summary.
David M. Lee Forward Vertex Detector Cost, Schedule, and Management Plan Participating Institutions Organizational plan Cost Basis R&D Costs.
Terra-Pixel APS for CALICE Progress meeting 10 th Nov 2005 Jamie Crooks, Microelectronics/RAL.
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Status: R&D: Scientific and Technical Resources Technical Design Overview Design status R&D Cost and.
Silicon strip detector R&D issues –readout chip decision –interface with PHENIX –ladder Technical options –SVX4 or MVD-TGV+AMU/ADC recut –other sensors.
RD program on hybrids & Interconnects Background & motivation At sLHC the luminosity will increase by a factor 10 The physics requirement on the tracker.
Upgrade with Silicon Vertex Tracker Rachid Nouicer Brookhaven National Laboratory (BNL) For the PHENIX Collaboration Stripixel VTX Review October 1, 2008.
FGT Magnet C Assembly metric tons (59 US tons) -100mm thick steel plates -6.6m high x 3.1m wide x 1m deep (outer dimensions) -5m high x 2.25m wide.
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
B => J/     Gerd J. Kunde PHENIX Silicon Endcap  Mini-strips (50um*2mm – 50um*11mm)  Will not use ALICE chip  Instead custom design based on.
Mu3e Data Acquisition Ideas Dirk Wiedner July /5/20121Dirk Wiedner Mu3e meeting Zurich.
Pixel detector/Readout for SuperB T.Kawasaki Niigata-U.
David M. Lee Los Alamos National Laboratory DOE Review of the Heavy Ion Program Agenda Introduction – Joel Moss 1. David M. Lee – KB02 program.
2 March 2012Mauro Citterio - SVT Phone meeting1 Peripheral Electronics Some updates Mauro Citterio INFN Milano.
Atlas SemiConductor Tracker final integration and commissioning Andrée Robichaud-Véronneau Université de Genève on behalf of the Atlas SCT collaboration.
SVD FADC SVD-PXD Göttingen, 25 September 2012
Technical Design for the Mu3e Detector
Preliminary thoughts on SVT services
Evidence for Strongly Interacting Opaque Plasma
INFN Pavia and University of Bergamo
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
SVT detector electronics
SVT detector electronics
SiD Tracker Concepts M. Breidenbach
RPC Front End Electronics
The CMS Tracking Readout and Front End Driver Testing
SVT detector electronics
PHENIX forward trigger review
The LHCb Front-end Electronics System Status and Future Development
Presentation transcript:

Gerd J. Kunde - LANL1 The FVTX Technology  Outline Overall Picture Silicon Detector –Geometry, Layout, Process Readout Chip –FNAL Chips, New Chip PHX Detector Module –Wedges, Lampshades Data Path Overview on R&D Issues Summary Gerd J. Kunde Los Alamos Nat’l Lab

Gerd J. Kunde - LANL2 FVTX Tracker Executive Summary  Four lampshade silicon detector stations on each side  Mini-strips with 50 micron radial pitch: mm  Readout via new PHX chip from Fermi Nat’l Lab  Total strip count: ~ 2 * 860,000 strips (zero suppressed)  Total chip count: ~ 2 * 1680 chips  Total silicon area: ~ 2 *3350 cm 2

Gerd J. Kunde - LANL3 78 cm 66 cm 45 cm The Inner Volume of PHENIX Mechanical Design for VTX and FVTX by LANL & Hytec NCC FVTX VTX

Gerd J. Kunde - LANL4 Current VTX & FVTX Specifications Barrel Sectioni-radiuslengthstrips/pixel layer 12.5 cm21.8 cmpixel layer 25 cm21.8 cmpixel layer 310 cm31.8 cmstrip layer 414 cm38.2 cmstrip ministrip18 cm38 cmstation 4 ministrip18 cm32 cmstation 3 ministrip10.6cm26 cmstation 2 ministrip6.6 cm20 cmstation 1 tilt = 22 dego-radiusz-start(+-) Endcap (north and south) 1.2% 2.0% 1.2 % Rad. Length

Gerd J. Kunde - LANL5 Silicon Detector Technical Overview  300 micron thickness  50 micron radial pitch (z reconstruction)  curved or straight strips ? (R&D)  1280,2048,2816 “mini-strips”  3.5 cm < r < 18 cm  < 1.5 % occupancy (central AA)  48 “towers” in phi  mini-strips pairs from 13.0 mm to 2.2 mm  readout via a PHX 5,8,11 chip row r = 3.5 cm r = 18.0 cm 1 PHX derived from FNAL chips

Gerd J. Kunde - LANL6 Only “2 ½” Silicon Detector types Inside Detector (I) Outside Detector (II) Outside Detector (III) 5 chips= 1280 * 2 strips mm^2 6 chips= 1536 * 2 strips mm^2 3 chips= 768 * 2 strips mm^2 50 micron strips (collaboration with Prague groups)

Gerd J. Kunde - LANL7 Two Silicon Wafer Layout Concepts* We assume 4 inch um wafers, the layout is matching the need of inner and outer detectors: Inner: 77 wafers + contingency Outer: 96 wafers + contingency ‘p on n’ technology (much simpler than ‘n+ on n’ with moderated p- spray) Proven technology with many vendors (1 st quotes are base for cost estimate) * Discussions with vendors concerning dicing

Gerd J. Kunde - LANL8 Silicon Sensor Schedule Based on ON quote and BTeV/Atlas WBS Construction Start

Gerd J. Kunde - LANL9 Existing FNAL Chip: FPIX2.1 Features  Advanced mixed analog/digital design  128 rows x 22 columns (2816 channels)  50 µm x 400 µm pixels  High speed readout intended for use in Level 1 trigger. Up to 840 Mbits/sec data output.  Very low noise, excellent threshold matching  DC coupled input (15 nA max leakage current per channel)  Output directly drives long cable (10 m, 30 feet)  90 micro watt/pixel (~0.25 watt/chip)  Rad hard to 50 Mrads Change geometry for PHX-chip and adjust analog front end to mini-strips capacitance

Gerd J. Kunde - LANL10 FPIX 2.1 Pixel Circuit (50 x 400 µm) 3 bit ADC FPIX2: 60 e-rms measured c=0 pf Signal/Noise ~ 75/1 Threshold/Noise ~ 15/1 for mips ion mini-strips on 300 um Si PHX Simulation 2 mm to 10 mm strip length

Gerd J. Kunde - LANL11 8 Chip Module: “Real” Threshold and Noise CHIP 4 These are typical distribution curves for threshold and noise for a FPIX 2.0 chip on an 8 chip HDI. (A mip gives ~ 24,000 electrons in 300 micron Si) Threshold Noise ENC (e-)

Gerd J. Kunde - LANL12 Measured FPIX 2.0 Power Consumption The power consumption of the 8 chip module is: for (VD=VA=2.5V) 1.86W Module idle. 2.26W Module collecting data.*  100 micro watt/channel for (VD=VA=2.2V) 1.51W Module idle. 1.83W Module collecting data.*  80 micro watt/channel * 8 chip module collecting data at 300Mbps.

Gerd J. Kunde - LANL13 Bump bonds Programming interface Discriminator Pipeline Digital interface signals & power FNAL Collaboration Ray Yarema’s group PHX Chip Layout: 256 channels/side 3.8 mm x 13 mm = 49.4 mm 2 Thinned to 150 to 200 um Bump bonds on 200 um pitch 50 µm dia solder bumps 512 bumps plus inter-chip bumps ~ 15 wafers needed Keep all digital backend the same ! Adjust only input (keep DC coupling) and geometry, optimize the row/column structure for readout speed and add pulser. Bus on chip ?

Gerd J. Kunde - LANL14 PHX Bus R&D FNAL Proposal: Power & Data Bus on Chip Bump Bonding Kapton Preliminary calculations by R.Yarema show that the I-R loss is acceptable, need optimize number of signal lines per chip Kapton PHX 300 um Silicon Alternate Proposal: Power & Data Bus on Kapton Wirebonding PHX Silicon side view cross section

Gerd J. Kunde - LANL15 FVTX Power ~3400 chips, but only ~ 100 Watts per Endcap Numbers added for both ends ! Fiber readout would require an additional 500 Watt of cooling, not directly on the detector but on the end plates

Gerd J. Kunde - LANL16 PHX Chip Development Schedule Conceptual Design Chip Layout Based on R.Yarema Estimate Construction Start

Gerd J. Kunde - LANL17 FVTX Wedge Assembly 3 mm carbon wedge for assembly and cooling 2 silicons in front 2 silicons in back Carbon Fiber Support and Cooling Eliminate dead silicon areas by overlapping 1 mm along edges ….

Gerd J. Kunde - LANL18 X 24 Total strip count: ~ 2 * 860,000 strips Total chip count: ~ 2 * 1680 chips Total silicon area: ~ 2 * 3350 cm 2 From Wedges to Lampshades Double Tower aka Wedge

Gerd J. Kunde - LANL19 FVTX Connections Copper Flex (Fiber) R&D Project: Flex Cables or Fiber to the ‘outside world’ ? Space Constraints (see R.Pak) Costs/Complexity/Reliability 6 x 512 channels 5 x 512 channels Copper Cables Copper Bus LVDS 4 x MBit Hit: 9 bit address,3 bit adc, 4 bit chip- id, tag 8bit => 24 bits 5 x 512 channels Fiber 4 Gbit/s Slow Control ~100 Hz Serializer Optical Driver 48 per station 61 LVDS Pairs

Gerd J. Kunde - LANL20 FVTX Connections I 12 fibers per connector ‘Collar’ board(green) and fiber optic connector(orange) R&D Project: Flex Cables or Fibers the ‘outside world’ ? Space Constraints (see R.Pak) 160 mm 30 mm 24 Fiber MPO Connector (x8) Samtech QSS-RA mm pitch Connector (7mmx54mm)

Gerd J. Kunde - LANL21 Copper vs. Fiber on Endplate - II Copper: Passive, only connectors Radius: ~ 1 m Fiber: Deserializer/ Fiber drivers Radius: ~ 0.5 m R&D issue under investigation

Gerd J. Kunde - LANL22 Electronics Readout Concept All Details in B.Cole’s Talk Driver ? data push ~169.8 Mbits/s PHX chips are zerosuppressed !!! Detector Magnet Platform chip download FVTX FEM Clock Mode Bits Slow Control Data to DCMs Serial Data From PHX Data to Level-1 Level-1 Accept PHX Clock/Control (Serial) Bus

Gerd J. Kunde - LANL23 FNAL Chip/FGPA Studies at LANL Serial inputParallel inputClock CounterHit Counter Write AddressHit Counter Reset FSSR 6 Chip Hybrid  Features: Zero dead time Store up to 8 hits per beam clock No explicit memory reset 8 hits 64 BeamClocks 512 x 18b Dual Port Memory 64 x 8b Beam Clock Buffer 64 x (3b+OFL) Hit Counter  Exercising FPIX and multiple FSSR Boards (same digital backend as future PHX)  Have working deserializer & 64 ring buffer (PHENIX standard), code by S. Butsyk and A.Puwar

Gerd J. Kunde - LANL24 FVTX Research & Development  Silicon Detector ‘p on n’ standard strips –Straight or curved strips ?  PHX Chip Low risk modification of existing design –Analog input, row/column structure, pulser New development –Bus on chip or flex ?  Interfacing Flex copper cables or Fibers –R&D  Transition Board (see B.Cole’s talk) New development –FVTX Interface Board (FIB) and firmware  DAQ/Slow Control  Mechanics/Cooling integrated in VTX solution See R.Pak’s presentation

Gerd J. Kunde - LANL25 FVTX Summary  North and South: 4 Station Precision Silicon Tracker for the Muon Arms  FNAL (BTeV) Technology for Readout Chip  Standard Silicon Strip Technology  R&D Schedule Exists (needs to start now !)  FVTX (DAQ) Interface Board with FPGA and Firmware R &D started under LANL grant Collaboration with Columbia/ISU  Mechanics/Infrastructure covered in talk by R.Pak  Detailed Schedule in talk by M.Brooks