QPOs ,准周期振荡 in Black Hole , Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsars Einstein’s Relativity in Strong Gravitation 张承民, 尹红星 National.

Slides:



Advertisements
Similar presentations
XIV Advanced School on Astrophysics Topic III: Observations of the Accretion Disks of Black Holes and Neutron Stars Ron Remillard Kavli Institute for Astrophysics.
Advertisements

MIT Workshop on Magnetized Accretion Disks Supported by: MIT-France Program CEA Saclay, France MIT Kavli Inst. for Astrophysics & Space Research MIT Dept.
Inner Cool Disks in the Low/Hard State of Accreting Black Holes 刘碧芳云南天文台 In collaboration with R.E. Taam, F. Meyer, and E. Meyer-Hofmeister.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Neutron Stars and Black Holes
Neutron Stars Chapter Twenty-Three.
Accretion Disk Spectra of Ultra- luminous X-ray Sources and Galactic superluminal jet sources Ken Ebisawa (INTEGRAL Science Data Center, NASA/GSFC) Piotr.
Ron Remillard, MIT Primary Collaborator, Jeff McClintock CfA
XIV Advanced School on Astrophysics Topic III: Observations of the Accretion Disks of Black Holes and Neutron Stars III.2 X-ray States of Black Hole.
X-ray States of Black Hole Binaries & Possible Applications for General Relativity Ron Remillard, Center for Space Research, M.I.T. This presentation will.
INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space.
Low Mass X-ray Binaries and Accreting Millisecond Pulsars A. Patruno R. Wijnands R. Wijnands M. van der Klis M. van der Klis P. Casella D. Altamirano D.
How X-ray Experiments See Black Holes: Past, Present and Future Lynn Cominsky Sonoma State University.
Pulsars in Low-Mass X-Ray Binaries Deepto Chakrabarty Massachusetts Institute of Technology.
BH binaries. Black hole binaries High mass (few) Low-mass (majority) ULX – ultraluminous X-ray sources Most of low-mass are transients. Microquasars.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Phy Spring20051 Rp-process Nuclosynthesis in Type I X-ray Bursts A.M. Amthor Church of Christ, Kingdom of Heaven National Superconducting Cyclotron.
Accreting Neutron Stars, Equations of State, and Gravitational Waves C. B. Markwardt NASA/GSFC and U. Maryland.
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
BH binaries.
Institute of Physics, Silesian University in Opava Gabriel Török GAČR 209/12/P740, CZ.1.07/2.3.00/ Synergy, GAČR G, SGS ,
Neutron star low-mass X-ray binaries Rudy Wijnands Anton Pannekoek Institute for Astronomy University of Amsterdam 3 August 2015Lorentz center, Leiden.
Simulation of the Recycled Pulsar Evolution Pan Yuanyue, Wang Na and Zhang Chengmin, Xinjiang Astronomical Observatory, CAS, Urumqi, China National Astronomical.
INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space.
Correlations Between the Twin kHz QPO Frequencies in Neutron Star Low-Mass X-ray Binaries 尹红星 张承民 NAOC, CAS April 22th, 2006.
A toy model for HFQPOs in XRBs Ye Yong-Chun ( 叶永春 ), Wang Ding-Xiong( 汪定雄 ) Department of Physics, Huazhong University of Science and Technology, Wuhan,
In collaboration: D. Barret (CESR), M. Bursa & J. Horák (CAS), W. Kluzniak (CAMK), J. Miller (SISSA). We acknowledge the support of Czech grants MSM ,
Gabriel Török* Relating high-frequency QPOs and neutron-star EOS *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
May Ljubljana Magnetic Field Upper Limits for Jet Formation in X-ray binaries & AGNs M. Kaufman Bernadó 1,* & M. Massi 1 1 Max Planck Institut für.
1 ACCRETING X-RAY MILLISECOND PULSARS IN OUTBURST M A U R I Z I O F A L A N G A Service d‘Astrophysique, CEA –Saclay Collaborators: J. Poutanen, L. Kuipers,
On some prospects of the LOFT mission Institute of Physics, Silesian University in Opava Astronomical Institute, Prague Gabriel Török, Pavel Bakala, Vladimír.
1 ACCRETING X-RAY MILLISECOND PULSARS M A U R I Z I O F A L A N G A & E R I N W. B O N N I N G NS day, ParisJune 27, 2007 Service d‘Astrophysique, CEA.
1 ACCRETING X-RAY MILLISECOND PULSARS IN OUTBURST M A U R I Z I O F A L A N G A Service d‘Astrophysique, CEA –Saclay, France Collaborators: J. Poutanen,
Timing and Spectral Properties of Neutron Star Low-Mass X-ray Binaries Sudip Bhattacharyya Department of Astronomy and Astrophysics Tata Institute of Fundamental.
Millisecond Pulsar and kHz QPOs of LMXB Chengmin ZHANG, NAOC 2011 – NAOC Collaborators: J. Wang, L.M. Song, Y.J. Lei, F. Zhang.
A physical interpretation of variability in X-ray binaries Adam Ingram Chris Done P Chris Fragile Durham University.
Binary millisecond X-ray pulsars Department of Physics University College Cork Paul Callanan and Mark Reynolds Alexei Filippenko, Department of Astronomy,
MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK OF THE ORBITAL RESONANCE MODEL OF QPOs MEASUREMENT OF BRANY BLACK HOLE PARAMETERS IN THE FRAMEWORK.
Probing Neutron Star EOS in Gravitational Waves & Gamma-ray Bursts Kim Young-Min, Cho Hee-Suk Lee Chang.-Hwan, Park Hong-Jo (Pusan National University)
A Toy Model for 3:2 HFQPO Pairs in Black Hole Binaries XTE J and GRO J Ding-Xiong WANG( 汪定雄 ), Zhao-Ming GAN (speaker, 甘朝明 ), Chang-Yin.
Spin-up and Spin-down of Accreting Millisecond Pulsars Alessandro Papitto Università di Roma Tor Vergata INAF-Astronomical Observatory of Rome & my research.
Sub-Eddington accretion flows in neutron-star low-mass X-ray binaries Rudy Wijnands Astronomical Institute “Anton Pannekoek” University of Amsterdam 25.
Timing Features of XTE J in 2003 March outburst Fan Zhang et al. (astro-ph/ ) --Possible Evidence for Accreting Blobs.
Historical SN and their properties Total energy released ~10 54 erg in a few hours.
Observations and physics of accreting neutron star ISSI, Bern, Switzerland December 3-7, 2007.
Gabriel Török, P.Bakala, E. Šrámková, Z. Stuchlík, M. Urbanec Mass and spin of NS implied by models of kHz QPOs *Institute of Physics, Faculty of Philosophy.
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
Abbas Askar University of Belgrade 12 th November 2011 Astronomy Workshop Presentation Belgrade, Serbia.
Gabriel Török* On orbital models of kHz QPOs in neutron star binaries *Institute of Physics, Faculty of Philosophy and Science, Silesian University in.
Paczyński Modulation: Diagnostics of the Neutron Star EOS? Institute of Physics, Silesian University in Opava Gabriel Török, Martin Urbanec, Karel Adámek,
Black Holes: Observations Lecture 2: BHs in close binaries Sergei Popov (SAI MSU)
Sawtooth-like Oscillations of Black Hole Accretion Disks Ryoji Matsumoto (Chiba Univ.) Mami Machida (NAOJ)
Accreting neutron stars as gravitational wave sources Duncan Galloway Andrew Melatos University of Melbourne Ed Morgan Deepto Chakrabarty Center for Space.
Many facets of Neutron Stars Astrosat and beyond Biswajit Paul Raman Research Institute, Bangalore.
Mass & Radius of Compact Objects Fastest pulsar and its stellar EOS CHENGMIN ZHANG National Astronomical Observatories Chinese Academy of Sciences, Beijing.
Institute of Physics, Silesian University in Opava Gabriel Török GAČR 209/12/P740, CZ.1.07/2.3.00/ Synergy, GAČR G, SGS ,
Global Simulations of Time Variabilities in Magnetized Accretion Disks Ryoji Matsumoto (Chiba Univ.) Mami Machida (NAOJ)
Formation of Redback and Black Widow Binary Millisecond Pulsars
Gabriel Török* 3:2 controversy …hope for underlying QPO physics ? *Institute of Physics, Faculty of Philosophy and Science, Silesian University in Opava,
RXTE Pursuit of Variability and X-ray States …plus a Few Fun Memories Ron Remillard, MIT Kavli Center for Astrophysics & collaborators (Jeff McClintock.
kHz QPOs of LMXBs Constrains on Pulsar Parameters Chengmin Zhang & Hongxing Yin National Astronomical Observatories, Beijing.
Recent Progress about kHz QPO and Spin in LMXB and their implications C.M. Zhang, H.X. Yin, Y. Yan, L.M. Song, F. Zhang National Astronomical Observatories,
Zdeněk Stuchlík, Gabriel Török, Petr Slaný Multi-resonant models of quasi-periodic oscillations Institute of Physics, Faculty of Philosophy and Science,
QPOs of LMXBs kHz QPO, millisecond pulsar
Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1
黑洞X射线双星的高频准周期振荡(HFQPO)与喷流(Jet)的 相关性
General Relativity in X-ray Astronomy Astrosat and Future Experiments
BH binaries.
Presentation transcript:

QPOs ,准周期振荡 in Black Hole , Neutron Star X-ray Sources: X-ray bursts, accreting-powered pulsars Einstein’s Relativity in Strong Gravitation 张承民, 尹红星 National Astronomical Observatories Chinese Academy of Sciences, Beijing

OUTLINE OF TALK Introduction of RXTE Black Hole (BH) and Neutron Star (NS) in Low Mass X-ray Binary (LMXB) KHz Quasi Periodic Oscillation (QPO) Millisecond accreting-powered X-ray Pulsar Type-I X-ray Burst Oscillation QPOs of NS/BH X-ray Sources Theoretical Mechanisms---Strong Gravity Further Expectation

Binary X-ray Sources Normal Star + Compact Star 10,000 lyr, 300Hz/450Hz Micro-quasar, Radio jet 7 solar mass/optical

QPO frequencies discovered by RXTE 1996—2006 , reviewed by van der Klis 2005, 06 NBO, ~5 Hz HBO, ~20-70 Hz Hundred, ~100 Hz kHz, ~1000-Hz Burst oscillation, ~300 Hz Spin frequency, ~300 Hz Low, high QPO, ~0.1 Hz Etc. QPO: Quasi Periodic Oscillation 准周期振荡

Atoll and Z Sources --- LMXB CCD Accretion rate direction ~Eddington Accretion ~1% Eddington Accretion

Discovery: typical twin KHZ QPOs Sco x-1, van der Klis et al 1997 Separation ~300 Hz Typically: Twin KHz QPO Upper ν 2 = 1000 (Hz) Lower ν 1 = 700 (Hz) 18/25 sources

QPO v.s. Accretion rate relation SCO X-1, Van der Klis, 2005, 06 QPO frequency increases with the accretion rate QPO 轮廓随吸积率变宽 / 低,消失

最大值 Max : ν max =1329 Hz, van Straaten 2000 min: ~200 Hz KHz QPO Data , Atoll sources 平均值 /Distribution of kHz QPOs : QPO (Atoll) ~ QPO ( Z ) Zhang et al 2006; 原因?

kHz QPOs of Z Sources

Difference of twin kHz QPOs = const? Beat model by Miller, Lamb & Psaltis 1998

Saturation of kHz QPO frequency ? 4U , NASA W. Zhang et al, 1998 Kaaret, et al 1999 Swank 2004; Miller 2004 BH/ISCO: 3 Schwarzschild radius Innermost stable circular orbit NS/Surface: star radius, hard surface

Parallel Line Phenomenon kHz QPO - luminosity relation Similarity/Homogeneous ? Among the different sources, same source at the different time

kHz QPO v.s. Count rate kHz QPO corresponds to the position in CCD, to the accretion rate Mdot; QPO ~ Mdot, 1/B B ~ Mdot, proportional Cheng & Zhang, 1998/2000 Zhang & Kojima, 2006

Accreting millisecond X-ray pulsar --- SAX J (7 sources) Wijnands and van der Klis, 1998 Nature Wijnands et al 2003 Nature 4 sources by Markwardt et al. 2002a, 2003a, 2003b, Galloway et al. 2002

SAXJ Twin kHz QPOs 700 Hz, 500 Hz Burst/spin: 401 Hz See, Wijnands 2006 Burst frequency ~ spin frequency ? , 2003 XTE 1807, kHz QPO, 191 Hz, Linares et al F. Zhang et al. 2006

IGR J Hz, Markwardt 2004, 7 MSP sources

Spectrum of Type-I X-ray Burst frequency 4U , van der Klis 2006; Strohmayer and Bildsten 2003

Type-I X-ray Burst Type-I X-ray Burst, Lewin et al 1995/Bildsten 1998 Thermonuclear reaction on accreting NS surface (T/P, spot) Burst rise time: 1 second Burst decay time: second Total energy: erg. Eddington luminosity ! 4U , (363 Hz) Strohmayer et al Hz Hz, in 10 second

Burst Oscillations

On the burst frequency Burst frequency increases ~ 2 Hz, drift. Decreasing is discovered From hot spot on neutron star kHz QPO separation ~ burst/spin frequency

Burst and Spin frequency XXXXXX 11 burst sources, Muno et al X-ray pulsars, Wijnands 2004; Chakrabarty 2004 kHz QPO separation=195 Hz/(spin=401 Hz) Burst and Spin frequency are similar

11 burst sources , Muno 2004

25 kHz QPO 源 3 rd kHz QPO ?

Low frequency QPO---kHz QPO 关系 Psaltis et al 1998, 1999 Belloni et al 2002; 2005 Empirical Relation ν HBO = 50. (Hz)(ν 2 /1000Hz) ν HBO = 42. (Hz) (ν 1 /500Hz) ν qpo = 10. (Hz) (ν 1 /500Hz) Low frequency QPO< 100 Hz FBO/NBO = 6-20 (Hz) HBO = (Hz) ν 1 = 700. (Hz)(ν 2 /1000Hz)

Twin kHz QPO relations ν 1 = ~700. (Hz)(ν 2 /1000Hz) b b ~ 1.6 Atoll Source 4U1728 b ~ 1.8 Z Source Sco X-1 Zhang et al. 2006

Twin kHz QPO distribution

Low-high frequency QPO 关系 Warner 2006; Warner & Woudt 2004; Mauche CVs, 5 magnitude orders in QPOs Black holes White dwarfs, Cvs Neutron stars ? Zhang 2005: Model

Black Hole High Frequency QPOs HFQPO: (Hz) Constant (stable) in frequency Mass/Spin/ Luminosity Pair frequency relation 3:2 Frequency-Mass relation: 1/M 7 BH sources, van der Klis 2006 Jets like Galactic BHs (McClintock & Remillard 2003) Different from those of NS’s ν k = (1/2π)(GM/r 3 ) 1/2 = (c/2πr) (R s /2r) 1/2 ν k ( ISCO ) = 2.2 (kHz) (M/Mסּ) -1 Miller, et al 1998 GRO J , XTE J XTE , 4U XTE , H GRS , 4/7 Sources Van der Klis 2006 Magnetosphere-disk instability noise: mechanism :? Genzel 2003; Auschenbach 2004; GC QPOs, 3:2

High Frequency QPOs in Black Hole LMXBs NameBH Mass(M sun )HF QPO (Hz)References GRO J ~6300,4501,2 XTE J ~10184, ,249~276 3,4 5 GRS ~1441,67 113, (?) 8(?) 9 H ~ 160, , XTE J ~9150~ U ~ ~ XTE J ~ 110~27014

(Astro-ph/ [8]) H [10] XTE J [14]

A comparison between high-frequency QPOs in BH LMXBs and those in NS LMXBs QPOs in NS LMXBs QPOs in BH LMXBs Twin kHz QPOsYes RatioNot a constant~3:2 Spectra indexSoftHard, saturation PulsationsYesNo Type I X-ray bursts YesNo 1/M scalingNo?yes ChangesIncrease with LxRelatively stable

STELLAR Black Hole—Micro-quasar GRS :67 Hz, 33 solar mass 10,000 lyr, 300Hz:450Hz=2:3 Microquasar, Radio jet 7 solar mass/optical

QPO and Break Frequency

Theoretical Consideration Strong Gravity: Schwarzschild Radius: R s =2GM/c 2 Innermost Stable Circular Orbit R Isco = 3R s Strong Magnetic: Gauss (Atoll, Z-sources) Beat Model: Kepler Frequency Difference to Spin frequency Accretion Flow around NS/BH Hard surface ?

QPO Models Titarchuk and cooperators ’ Model transition layer formed between a NS surface and the inner edge of a Keplerian disk, QPO: magnetoacoustic wave (MAW), Keplerian frequency. Low-high frequency relation 0.08 ratio Abramovicz and cooperators ’ Model non-linear resonance between modes of accretion disk oscillations HFQPO: Stella black hole QPO, 3:2 relation Wang, DX, 2003, positions Miller, Lamb & Psaltis ’ Beat Model, developed from Alpar & Shaham 1985 Nature ; Lamb et al 1985 Nature Relativistic precession model by Stella & Vietri 1999

Theoretical Models Beat Model (HBO), ν HBO = ν kepler - ν spin ν Kepler ≈ r -3/2 is the Kepler Frequency of the orbit ν spin Constant, is the spin Frequency of the star Alpar, M., Shaham, J., 1985, Nature r ~ 1/M dot, ν HBO ~ M dot Beat Model for KHz QPO ν 2 = ν kepler ν 1 = ν kepler - ν spin ∆ν = ν 2 - ν 1 = ν spin Miller, Lamb, Psaltis 1998; Strohmayer et al 1996 Lamb & Miller 2003 …Constant What modulate X-ray Flux ? Why quasi periodic, not periodic ? Parameters: M/R/Spin, B?--Z/Atoll

X- 射线源准周期振荡 QPO, Beat ? 间隔常数? NO ! 拍模型预言 : 间隔常数 = 自旋 Alpar 和 Shaham , 1985 , Nature 。 Lamb et al 1985 , Nature 。 Miller et al 1998 , ApJ 。 SAXJ 1808, Wijnands, Nat, 2003 XTEJ 1807, Zhang, F, Qu JL, Zhang CM, Li TP, Chen, W., 2006

Einstein’s Prediction: Perihelion Motion of Orbit Perihelion precession of Mercury orbit = 43” /century, near NS, ~10^16 times large

Neutron Star Orbit N. Copernicus Einstein’s General Relativity: Perihelion precession Precession Model for KHz QPO, Stella and Vietri, 1999 ν 2 = ν kepler ν 1 = ν precession = ν 2 [1 – (1 – 3Rs/r) 1/2 ] ∆ν = ν 2 - ν 1 is not constant ISCO Saturation

Theoretical model Stella and Vietrie, 1999, Precession model Problems: 1.Vacuum 2.Circular orbit 3.Test particle 4.Predicted 2 M ⊙ sources, NS mass ~ 1.4 solar mass

Lense-Thirring Precession From Einstein GR, frame dragging was first quantitatively stated by W. Lense and H. Thirring in 1918, which is also referred to as the Lense-Thirring effect Zhang, SN et al 1997; Cui et al 1998: BH precession ? L.Stella, M.Vietri, 1998 Gravity Probe B, Gyroscope experiment, Stanford U, led by F.Everit, 2003 Gravitomagnetism Conf., 2 nd Fairbank W., Rome U, organized by R.Ruffini, 1998 Book “Gravitation and Inertia” by Ciufolini and Wheeler, 1995

Problems ? Vacuum ? Kerr rotation ? Magnetic Field ? Inner Accretion Disk ? Similarity: common parameter: accretion rate/radius

Alfven wave oscillation MODEL (in Schwarzschild spacetime): Zhang 2004; Li & Zhang 2005 Keplerian Orbital frequency resonance MHD Alfven wave Oscillation in the orbit ν 2 = 1850 (Hz) A X 3/2 ν 1 = ν 2 X (1- (1-X) 1/2 ) 1/2 A=m 1/2 /R 6 3/2; X=R/r, m: Ns mass in solar mass R 6 is NS radius in 10^6 cm

NS Mass in solar mass N S radius (km) Constrain on Star EOS, mass & radius CN1/CN2: normal neutron matter, CS1/CS2: Strange matter CPC: core becomes Bose-Einstein condensate of pions Kerr spacetime ?

10 年 RXTE 探测总结 观测,进展较大, QPO 关系明确 理论,进展缓慢,很多模型 ? 强引力广义相对论验证中子星结构检验核物理 开普勒运动 近星点进动 LT 进动 / 引力磁 引力红移 黑洞 /Kerr 时空 引力波 光线弯曲 质量 半径 核物态 (中子 / 夸克) 磁场 旋转 吸积流动 QPO 机制? 数据处理? 新物理? 物理实验室

References: 1: Remillard, R. A. et al. 1999, ApJ, 522, 397 2: Strohmayer, T. E. 2001, ApJ, 552, L49 3: Remillard, R. A. et al. 1999, ApJ, 517, L127 4: Remillard, R. A. et al. 2002, ApJ, 580, : Miller, J. M. et al. 2001, ApJ, 563, 928 6: Strohmayer, T. E. 2001, ApJ, 554, L169 7: Remillard, R. A. 2003, abstract HEAD,7,3003 8: Remillard, R. A (astro-ph/ ) 9: Belloni, T. et al (astro-ph/ ) 10: Homan, J. et al. 2005, ApJ, 623, : Remillard, R. A. et al. 2006, ApJ, 637, : Markwardt, C. 2001, ApSSS, 276,209 13: Klein-Wolt, M. et al. 2004, NuPhS, 132, : Homan, J. et al. 2003, ApJ, 586, 1262