© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30-July 2, 2008 Taiwan 2008 CUDA Course Programming Massively Parallel Processors: the CUDA experience.

Slides:



Advertisements
Similar presentations
June 9, DCSE Delft Centre for Computational Science and Engineering Delft Centre for Computational Science and Engineering.
Advertisements

ECE 598HK Computational Thinking for Many-core Computing Lecture 2: Many-core GPU Performance Considerations © Wen-mei W. Hwu and David Kirk/NVIDIA,
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lecture 14: Basic Parallel Programming Concepts.
Introduction to CUDA and CELL SpursEngine Multi-core Programming 1 Reference: 1. NVidia CUDA (Compute Unified Device Architecture) documents 2. Presentation.
GPUs. An enlarging peak performance advantage: –Calculation: 1 TFLOPS vs. 100 GFLOPS –Memory Bandwidth: GB/s vs GB/s –GPU in every PC and.
©Wen-mei W. Hwu and David Kirk/NVIDIA 2010 ECE 498HK Computational Thinking for Many-core Computing Lecture 15: Dealing with Dynamic Data.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors Chapter.
Back-Projection on GPU: Improving the Performance Wenlay “Esther” Wei Advisor: Jeff Fessler Mentor: Yong Long April 29, 2010.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign ECE408 / CS483 Applied Parallel Programming.
COMS W1004 Introduction to Computer Science May 29, 2009.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, University of Illinois, Urbana-Champaign 1 ECE408 / CS483 Applied Parallel Programming.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Programming Massively Parallel Processors.
© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30 – July 2, Taiwan 2008 CUDA Course Programming Massively Parallel Processors: the CUDA experience.
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al, University of Illinois, ECE408 Applied Parallel Programming Lecture 11 Parallel.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lectures 7: Threading Hardware in G80.
UIUC CSL Global Technology Forum © NVIDIA Corporation 2007 Computing in Crisis: Challenges and Opportunities David B. Kirk.
Introduction to CUDA (1 of 2) Patrick Cozzi University of Pennsylvania CIS Spring 2012.
Introduction to CUDA 1 of 2 Patrick Cozzi University of Pennsylvania CIS Fall 2012.
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, Illinois, August 2-5, 2010 VSCSE Summer School Proven Algorithmic Techniques for Many-core Processors Lecture.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 1 Programming Massively Parallel Processors Lecture Slides for Chapter 1: Introduction.
© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30-July 2, Taiwan 2008 CUDA Course Programming Massively Parallel Processors: the CUDA experience.
GPU Programming and Architecture: Course Overview Patrick Cozzi University of Pennsylvania CIS Spring 2012.
GPU Computing April GPU Outpacing CPU in Raw Processing GPU NVIDIA GTX cores 1.04 TFLOPS CPU GPU CUDA Architecture Introduced DP HW Introduced.
© David Kirk/NVIDIA and Wen-mei W. Hwu Urbana, Illinois, August 18-22, 2008 VSCSE Summer School 2008 Accelerators for Science and Engineering Applications:
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, Illinois, August 2-5, 2010 VSCSE Summer School Proven Algorithmic Techniques for Many-core Processors Lecture.
© David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al, University of Illinois, ECE408 Applied Parallel Programming Lecture 12 Parallel.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 CS 395 Winter 2014 Lecture 17 Introduction to Accelerator.
© David Kirk/NVIDIA and Wen-mei W. Hwu, University of Illinois, Urbana-Champaign 1 ECE408 Applied Parallel Programming Lecture 16 - Floating.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lectures 9: Memory Hardware in G80.
1 ECE408/CS483 Applied Parallel Programming Lecture 10: Tiled Convolution Analysis © David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, ECE 498AL, University of Illinois, Urbana-Champaign ECE408 / CS483 Applied Parallel Programming.
FIGURE 11.1 Mapping between OpenCL and CUDA data parallelism model concepts. KIRK CH:11 “Programming Massively Parallel Processors: A Hands-on Approach.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 CMPS 5433 Dr. Ranette Halverson Programming Massively.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 Basic Parallel Programming Concepts Computational.
Multicore Computing Lecture 1 : Course Overview Bong-Soo Sohn Associate Professor School of Computer Science and Engineering Chung-Ang University.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Programming Massively Parallel Processors.
GPU Programming and Architecture: Course Overview Patrick Cozzi University of Pennsylvania CIS Fall 2012.
Stakeholders How to engage them ? How to ensure success ? David Padua University of Illinois at Urbana-Champaign.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lecture 18: Final Project Kickoff.
© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30-July 2, Taiwan 2008 CUDA Course Programming Massively Parallel Processors: the CUDA experience.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lectures 8: Threading Hardware in G80.
Introduction to CUDA (1 of n*) Patrick Cozzi University of Pennsylvania CIS Spring 2011 * Where n is 2 or 3.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign 1 Final Project Notes.
© David Kirk/NVIDIA, Wen-mei W. Hwu, and John Stratton, ECE 498AL, University of Illinois, Urbana-Champaign 1 CUDA Lecture 7: Reductions and.
GPU Programming Shirley Moore CPS 5401 Fall 2013
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483/498AL, University of Illinois, Urbana-Champaign 1 ECE 408/CS483 Applied Parallel Programming.
© David Kirk/NVIDIA and Wen-mei W. Hwu Urbana, Illinois, August 10-14, VSCSE Summer School 2009 Many-core Processors for Science and Engineering.
© David Kirk/NVIDIA and Wen-mei W. Hwu, University of Illinois, Urbana-Champaign 1 CS/EE 217 GPU Architecture and Parallel Programming Project.
Efficient Parallel CKY Parsing on GPUs Youngmin Yi (University of Seoul) Chao-Yue Lai (UC Berkeley) Slav Petrov (Google Research) Kurt Keutzer (UC Berkeley)
CS6068 Week 2 Quiz. What are David Patterson’s Three Wall of Computer Architecture?
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Spring 2010 Lecture 13: Basic Parallel.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors Lecture.
1 2D Convolution, Constant Memory and Constant Caching © David Kirk/NVIDIA and Wen-mei W. Hwu ECE408/CS483/ECE498al University of Illinois,
Introduction to CUDA 1 of 2 Patrick Cozzi University of Pennsylvania CIS Fall 2014.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Spring 2010 Programming Massively Parallel.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, University of Illinois, Urbana-Champaign 1 Graphic Processing Processors (GPUs) Parallel.
CS 52500, Parallel Computing Spring 2011 Alex Pothen Lectures: Tues, Thurs, 3:00—4:15 PM, BRNG 2275 Office Hours: Wed 3:00—4:00 PM; Thurs 4:30—5:30 PM;
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors Lecture.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign 1 Final Project Kickoff.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408, University of Illinois, Urbana-Champaign 1 GPU.
©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, Illinois, August 2-5, 2010 VSCSE Summer School Proven Algorithmic Techniques for Many-core Processors Lecture.
1 CS/EE 217 GPU Architecture and Parallel Programming Lecture 9: Tiled Convolution Analysis © David Kirk/NVIDIA and Wen-mei W. Hwu,
REPENTURN July 5, 2015 REPENTURN REPENTURN REPENTURN.
1 Kostas Glinos European Commission - DG INFSO Head of Unit, Géant and e-Infrastructures "The views expressed in this presentation are those of the author.
Multicore Computing Lecture 1 : Course Overview Bong-Soo Sohn Associate Professor School of Computer Science and Engineering Chung-Ang University.
Xen GPU Rider. Outline Target & Vision GPU & Xen CUDA on Xen GPU Hardware Acceleration On VM - VMGL.
Programming Massively Parallel Processors Lecture Slides for Chapter 9: Application Case Study – Electrostatic Potential Calculation © David Kirk/NVIDIA.
Human Media Multicore Computing Lecture 1 : Course Overview
A fixed-function NVIDIA GeForce graphics pipeline.
Presentation transcript:

© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30-July 2, 2008 Taiwan 2008 CUDA Course Programming Massively Parallel Processors: the CUDA experience Lecture 9 Discussions and Conclusions

© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30-July 2, 2008 Discussions All attendees please share your –name, affiliation –research domain or project –motivation for learning CUDA –plans for CUDA related research –questions, concerns, and thoughts

© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30-July 2, 2008 A Great Opportunity for Many GPU parallel computing allows –Drastic reduction in “time to discovery” –1 st principle-based simulation at meaningful scale –New, 3 rd paradigm for research: computational experimentation The “democratization” of power to discover –$2,000/Teraflop SPFP in personal computers today –$5,000,000/Petaflops DPFP in clusters in two years –HW cost will no longer be the main barrier for big science –You will make the difference! Join the international CUDA research, education and development community