7.4 Similarity in Right Triangles

Slides:



Advertisements
Similar presentations
8-1 Similarity in Right Triangles
Advertisements

Similarity in Right Triangles
Geometric Mean Theorem I
9.1 Similar Right Triangles. Theorem If an altitude is drawn to the hypotenuse of a Right triangle, then it makes similar triangles to the original Right.
Altitudes Recall that an altitude is a segment drawn from a vertex that is perpendicular to the opposite of a triangle. Every triangle has three altitudes.
Mean Proportional – Day 2
Altitude to the Hypotenuse Theorem - Tomorrow we will use this theorem to prove the Pythagorean Theorem!
Assignment P. 361: 32, 34, 36 P : 1-3, 5-23, 30, 31, 33, 38, 39 Challenge Problems.
MA.912.T.2.1 CHAPTER 9: RIGHT TRIANGLES AND TRIGONOMETRY.
Similar Right Triangles 1. When we use a mirror to view the top of something…….
Section 7.4 Similarity in Right Triangles. Geometric Mean The positive number of x such that ═
7.4 Similarity in Right Triangles In this lesson we will learn the relationship between different parts of a right triangle that has an altitude drawn.
Section 8-1 Similarity in Right Triangles. Geometric Mean If a, b, and x are positive numbers and Then x is the geometric mean. x and x are the means.
Do investigation on page 439.
7-4 Similarity in Right Triangles
7.4 Similarity in Right Triangles
8-4 Similarity in Right Triangles One Key Term One Theorem Two Corollaries.
Mean Proportional.
Section 9.1 Similar Right Triangles OBJECTIVE: To find and use relationships in similar right triangles BIG IDEAS: REASONING AND PROOF VISUALIZATIONPROPORTIONALITY.
Chapter 7.4.  The altitude is the Geometric Mean of the Segments of the Hypotenuse.
8.4: Similarity in Right Triangles Objectives: Students will be able to… Find the geometric mean between 2 numbers Find and use relationships between similar.
OBJECTIVES: 1) TO FIND AND USE RELATIONSHIPS IN SIMILAR RIGHT TRIANGLES. PDN: PG.439 #2-8 EVENS 8-4 Similarity in Right Triangles M11.C A.
9.1 (old geometry book) Similar Triangles
Geometric Mean and Right Triangles
LESSON 8.4: Similarity in Right Triangles OBJECTIVES: To determine and use relationships in similar right triangles.
Warm Up Week 7. Section 9.1 Day 1 I will solve problems involving similar right triangles. Right Triangle – Altitude to Hypotenuse If the altitude.
Similar Right Triangle Theorems Theorem 8.17 – If the altitude is drawn to the hypotenuse if a right triangle, then the two triangles formed are similar.
Chapter 8 Lesson 4 Objective: To find and use relationships in similar right triangles.
Geometric Mean and the Pythagorean Theorem
To find the geometric mean between 2 numbers
Similarity in Right Triangles 7-4. Warmup activity (don’t need to turn in) Complete activity on p. 391 with a partner.
Use Similar Right Triangles
7.1 Ratio and Proportions -Ratios: A comparison of 2 quantities -Proportion: A statement that 2 ratios are equal -Extended Proportion: When 3 or more ratios.
Similar Right triangles Section 8.1. Geometric Mean The geometric mean of two numbers a and b is the positive number such that a / x = x / b, or:
9.3 Altitude-On-Hypotenuse Theorems (a.k.a Geometry Mean)
7.3 Use Similar Right Triangles
NOTES GEOMETRIC MEAN / SIMILARITY IN RIGHT TRIANGLES I can use relationships in similar right triangles.
9.3 Similar Right Triangles. Do Now: Draw the altitude and describe what it is.
Section 8-1 Similarity in Right Triangles. Altitudes altitude Recall that an altitude is a segment drawn from a vertex such that it is perpendicular to.
Altitudes Recall that an altitude is a segment drawn from a vertex that is perpendicular to the opposite of a triangle. Every triangle has three altitudes.
7.4 Notes Similarity in Right Triangles. Warm-up:
Chapter 9: Right Triangles and Trigonometry Section 9.1: Similar Right Triangles.
Chapter 9: Right Triangles and Trigonometry Lesson 9.1: Similar Right Triangles.
Section 7-4 Similarity in Right Triangles. Hands-On Activity Take a piece of paper and cut out a right triangle. Use the edge of the paper for the right.
 Lesson 7-4.  Draw one of the diagonals for your rectangle to form two right triangles. Q: What is the relationship between the two right triangles?
Find the geometric mean between: 1.6 and and 20 Geometric Mean x is the geometric mean between a and b. a x x b = Warm-up!!
Pythagorean Theorem and Special Right Triangles
Before: April 4, 2016 Are triangle KRA and triangle FLN similar?
Geometric Mean 7.1.
Right Triangles and Trigonometry
Geometric Mean Pythagorean Theorem Special Right Triangles
Warm Up.
5.3 Properties of Right Triangles
8-1 Vocabulary Geometric mean.
8-1: Similarity in Right Triangles
Chapter 7.3 Notes: Use Similar Right Triangles
Similar Right Triangles: Geometric Mean
9.3 Warmup Find the value of x and y
7.3 Use Similar Right Triangles
Lesson 50 Geometric Mean.
Similar Right Triangles
DO NOW.
Geometric Mean Pythagorean Theorem Special Right Triangles
Similarity in Right Triangles
8.1 Geometric Mean The geometric mean between two numbers is the positive square root of their product. Another way to look at it… The geometric mean is.
Using Similar Right Triangles
Geometric Mean and the Pythagorean Theorem
Similar Right Triangles
Similarity in Right Triangles
Presentation transcript:

7.4 Similarity in Right Triangles The altitude to the hypotenuse of a right triangle divides the triangle into two triangles that are similar to the original triangle and to each other.

Geometric Mean The geometric mean of two positive numbers a and b is the positive number x that satisfies

Find a Geometric Mean Find the geometric mean of 6 and 15.

Corollary 1 to Theorem 7.3 The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

Corollary 2 to Theorem 7.3 The altitude to the hypotenuse of a right triangle separates the hypotenuse so that the length of each leg of the triangle is the geometric mean of the length of the hypotenuse and the length of the segment of the hypotenuse adjacent to the leg.

Using the Corollaries What are the values of x and y?

More Practice!!!!! Homework – Textbook p. 464 – 465 #3 – 6, 9 – 21.