Section 8-1 Similarity in Right Triangles. Geometric Mean If a, b, and x are positive numbers and Then x is the geometric mean. x and x are the means.

Slides:



Advertisements
Similar presentations
8-1 Similarity in Right Triangles
Advertisements

Geometric Mean Theorem I
9.1 Similar Right Triangles. Theorem If an altitude is drawn to the hypotenuse of a Right triangle, then it makes similar triangles to the original Right.
GOAL 1 PROPORTIONS IN RIGHT TRIANGLES EXAMPLE Similar Right Triangles THEOREM 9.1 If the altitude is drawn to the hypotenuse of a right triangle,
Altitudes Recall that an altitude is a segment drawn from a vertex that is perpendicular to the opposite of a triangle. Every triangle has three altitudes.
Objectives Use geometric mean to find segment lengths in right triangles. Apply similarity relationships in right triangles to solve problems.
Similarity in Right Triangles Students will be able to find segment lengths in right triangles, and to apply similarity relationships in right triangles.
Objectives Use geometric mean to find segment lengths in right triangles. Apply similarity relationships in right triangles to solve problems.
7.4 Similarity in Right Triangles
Section 7.4 Similarity in Right Triangles. Geometric Mean The positive number of x such that ═
7.4 Similarity in Right Triangles In this lesson we will learn the relationship between different parts of a right triangle that has an altitude drawn.
Do investigation on page 439.
7-4 Similarity in Right Triangles
Similarity in Right Triangles
Geometry 8.1 Right Triangles.
7.4 Similarity in Right Triangles
8-4 Similarity in Right Triangles One Key Term One Theorem Two Corollaries.
Mean Proportional.
Section 9.1 Similar Right Triangles OBJECTIVE: To find and use relationships in similar right triangles BIG IDEAS: REASONING AND PROOF VISUALIZATIONPROPORTIONALITY.
Chapter 7.4.  The altitude is the Geometric Mean of the Segments of the Hypotenuse.
8.4: Similarity in Right Triangles Objectives: Students will be able to… Find the geometric mean between 2 numbers Find and use relationships between similar.
OBJECTIVES: 1) TO FIND AND USE RELATIONSHIPS IN SIMILAR RIGHT TRIANGLES. PDN: PG.439 #2-8 EVENS 8-4 Similarity in Right Triangles M11.C A.
9.1 (old geometry book) Similar Triangles
Geometric Mean and Right Triangles
9.3 Altitude-On-Hypotenuse Theorems (a.k.a Geometry Mean)
Right Triangles and Trigonometry Chapter Geometric Mean  Geometric mean: Ex: Find the geometric mean between 5 and 45 Ex: Find the geometric mean.
Warm Up Week 7. Section 9.1 Day 1 I will solve problems involving similar right triangles. Right Triangle – Altitude to Hypotenuse If the altitude.
Similar Right Triangles
Similar Right Triangle Theorems Theorem 8.17 – If the altitude is drawn to the hypotenuse if a right triangle, then the two triangles formed are similar.
Chapter 8 Lesson 4 Objective: To find and use relationships in similar right triangles.
Section 8-1: Geometric Mean When the means of a proportion are the same number, that number is called the geometric mean of the extremes.
Geometric Mean and the Pythagorean Theorem
To find the geometric mean between 2 numbers
Similarity in Right Triangles 7-4. Warmup activity (don’t need to turn in) Complete activity on p. 391 with a partner.
GEOMETRY HELP Find the geometric mean of 3 and 12. x 2 = 36 Cross-Product Property x = 6 x = 36 Find the positive square root. The geometric mean of 3.
Use Similar Right Triangles
Similar Right triangles Section 8.1. Geometric Mean The geometric mean of two numbers a and b is the positive number such that a / x = x / b, or:
9.3 Altitude-On-Hypotenuse Theorems (a.k.a Geometry Mean)
NOTES GEOMETRIC MEAN / SIMILARITY IN RIGHT TRIANGLES I can use relationships in similar right triangles.
9.3 Similar Right Triangles. Do Now: Draw the altitude and describe what it is.
7.4 Notes Similarity in Right Triangles. Warm-up:
Chapter 9: Right Triangles and Trigonometry Section 9.1: Similar Right Triangles.
Chapter 9: Right Triangles and Trigonometry Lesson 9.1: Similar Right Triangles.
Section 7-4 Similarity in Right Triangles. Hands-On Activity Take a piece of paper and cut out a right triangle. Use the edge of the paper for the right.
 Lesson 7-4.  Draw one of the diagonals for your rectangle to form two right triangles. Q: What is the relationship between the two right triangles?
8-1 Geometric Mean The student will be able to: 1.Find the geometric mean between two numbers. 2.Solve problems involving relationships between parts of.
Pythagorean Theorem and Special Right Triangles
Geometric Mean 7.1.
Right Triangles and Trigonometry
Geometric Mean Pythagorean Theorem Special Right Triangles
8-1 Vocabulary Geometric mean.
8-1: Similarity in Right Triangles
5.4: The Pythagorean Theorem
Chapter 7.3 Notes: Use Similar Right Triangles
Section 5.3A: Similar Triangles
7.3 Use Similar Right Triangles
Lesson 50 Geometric Mean.
Objectives Students will learn how to use geometric mean to find segment lengths in right triangles and apply similarity relationships in right triangles.
Similar Right Triangles
DO NOW.
5.4: The Pythagorean Theorem
Chapter 8 Section 1 Recall the rules for simplifying radicals:
Geometric Mean Pythagorean Theorem Special Right Triangles
Similarity in Right Triangles
8.1 Geometric Mean The geometric mean between two numbers is the positive square root of their product. Another way to look at it… The geometric mean is.
Using Similar Right Triangles
Similar Right Triangles
Right Triangles with an altitude drawn.
Section 8.1 – 8.2 Geometric Mean Pythagorean Theorem
Presentation transcript:

Section 8-1 Similarity in Right Triangles

Geometric Mean If a, b, and x are positive numbers and Then x is the geometric mean. x and x are the means a and b are the extremes

Example: Find the geometric mean between 5 and Set up a proportion: 2. Cross Multiply: 3. Solve: *Simplify the radical if possible!

Theorem 8-1 If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other.

A NB C

Corollary 1 When the altitude is drawn to the hypotenuse of a right triangle, the length of the altitude is the geometric mean between the segments of the hypotenuse.

A NB C

Corollary 2 When the altitude is drawn to the hypotenuse of a right triangle, each leg is the geometric mean between the hypotenuse and the segment of the hypotenuse that is adjacent to that leg.

A NB C So we can say: or