Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Stefan Hild, M.Mantovani, A.Perreca and A. Freise Advanced Virgo meeting, August 2008 Automated simulations: choosing modulation frequencies à la Advanced.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) STRAY LIGHT PROBLEMS IN INTERFERO- METRIC GRAVITATIONAL WAVE DETECTORS S. Hild, H.
Cascina, January 24, 2005 Status of GEO600 Joshua Smith for the GEO600 team.
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Optics of GW detectors Jo van den Brand
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
Towards dual recycling with the aid of time and frequency domain simulations M. Malec for the GEO 600 team Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut.
Stefan Hild 1ILIAS WG1 meeting, Cascina, November 2006 Comparison of tuned and detuned Signal-Recycling Stefan Hild for the GEO-team.
Stefan Hild 1Ilias WG1 meeting, Sep 2005, Perugia Title GEO 600 Commissioning progress Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
G R DC Readout for Advanced LIGO P Fritschel LSC meeting Hannover, 21 August 2003.
RF readout scheme to overcome the SQL Feb. 16 th, 2004 Aspen Meeting Kentaro Somiya LIGO-G Z.
Joshua Smith December 2003 Detector Characterization of Dual-Recycled GEO600 Joshua Smith for the GEO600 team.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
Interferometer Control Matt Evans …talk mostly taken from…
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
Finesse Update + Noise Propagation-Simulation Tutorial AEI, Hannover Andreas Freise University of Birmingham.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Amaldi conference, June Lock acquisition scheme for the Advanced LIGO optical configuration Amaldi conference June24, 2005 O. Miyakawa, Caltech.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
1 Experiences and lessons learned from interferometer simulations at GEO GWADW, Andreas Freise for Hartmut Grote, Holger Wittel and the rest.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
Enhanced LIGO with squeezing: Lessons Learned for Advanced LIGO and beyond.
LIGO- G R Amaldi7 July 14 th, 2007 R. Ward, Caltech 1 DC Readout Experiment at the Caltech 40m Laboratory Robert Ward Caltech Amaldi 7 July 14.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Stefan Hild 111th WG1 meeting, Hannover, January 2007 DC-Readout for GEO Stefan Hild for the GEO-team.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
LIGO-G R DC Detection at the 40m Lab DC Detection Experiment at the 40m Lab Robert Ward for the 40m Lab to the AIC group Livingston LSC meeting.
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
GEO Status and Prospects Harald Lück ILIAS / ETmeeting Cascina November 2008.
Stefan Hild 1GWADW, Elba, May 2006 Experience with Signal- Recycling in GEO 600 Stefan Hild, AEI Hannover for the GEO-team.
LIGO-G D Advanced LIGO Systems & Interferometer Sensing & Control (ISC) Peter Fritschel, LIGO MIT PAC 12 Meeting, 27 June 2002.
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Interferometer configurations for Gravitational Wave Detectors
Detuned Twin-Signal-Recycling
Demonstration of lock acquisition and optical response on
GEO600 Control aspects where do the error signal come from?
Overview of quantum noise suppression techniques
Progress toward squeeze injection in Enhanced LIGO
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Commissioning progress Stefan Hild Ilias WG1 meeting, Sep 2005
Heterodyne Readout for Advanced LIGO
Homodyne or heterodyne Readout for Advanced LIGO?
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Heterodyne Readout for Advanced LIGO
A New OEO Design Using Optical Phase Modulation and Modulation Suppression G. John Dick and Nan Yu Jet Propulsion Laboratory, California Institute of Technology.
Variable reflectivity signal-recycling mirror and control
“Traditional” treatment of quantum noise
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Optimal on-line time-domain calibration of the
Squeezed Light Techniques for Gravitational Wave Detection
RF readout scheme to overcome the SQL
Advanced Optical Sensing
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR S. Hild, H. Grote, J. Degallaix, A. Freise, M. Hewitson, H. Lück, K.A. Strain, J.R. Smith and B. Willke Motivation for DC-readout LIGO-G Z Reduced shot noise (no contributing terms from 2 times the heterodyne frequency) Reduction of oscillator phase noise and oscillator amplitude noise Stronger low pass filtering of local oscillator (due to PR cavity pole) Simplify the GW detector Simpler calibration (GW-signal in a single data-stream, even for detuned SR) Simpler circuits for photodiodes and readout electronics Possibility to use photodiodes with larger area => reduced coupling of pointing Reduced number of beating light fields at the output photodiode => simpler couplings of technical noise Requires less effort for injecting squeezed light (=> useful precursor for GEO-HF) LO and GW pass the same optical system (identical delay, filtering, spatial profile) => This advantage is especially important for detectors with arm cavities. Increased coupling of laser power noise. Usually an output mode cleaner (OMC) is required. Very sensitive to imbalances of the interferometer arms. Definitions Tuning/detuning of the Signal-Recycling cavity (microscopic length) tuned: carrier is resonant in SR-cavity detuned: carrier is off resonance in SR-cavity (550 Hz or 1 kHz) Readout system heterodyne: LO from RF sidebands (Schnupp modulation) DC-readout / homodyne: Carrier from dark fringe offset serves as LO Optical gain Transfer function from differential dis- placement to signal at the detection point. Simulated shot noise Rotation of optical response (for detuned SR) Tuned Signal-Recycling Detuned Signal-Recycling (550Hz) Summary Frequency [Hz] Darkport power [W/sqrt(Hz)} Heterodyne 550 Hz Red. MI modulation + carrier from dfo Turning down the radio frequency modulation (stable operation is possible with 10 lower sidebands) Dark port is dominated by carrier light (TEM 00 ) from a 50 pm dark fringe offset We demonstrated a DC-readout scheme without output mode cleaner in GEO600. DC-readout and heterodyne detection has been compared for several Signal- Recycling tunings. Using DC-readout a displacement sen- sitivity of 2· m/sqrt(Hz) is achieved. Simulations were performed with FINESSE. DC-readout gives a better peak sensitivity than hetero- dyne readout, independent of the SR tuning. For detuned SR: A rotation of the detector response is observed, when going from heterodyne to DC-readout CGW+GW-MI+MI- f<< 550 Hz f>>550 Hz The predicted rotation of the detector response is confirmed by the measurements. This phenomenon can be explained by the opposite phase of the two heterodyne sidebands. Shot noise Increased in DC-readout Roughly same as with heterodyne (2e-19m/sqrt(Hz)) Increased technical noise Laser power noise limits the sensitivity at some frequencies below 300 Hz. Above 300 Hz laser power noise seems not to be a problem. Optical gain increases with the size of the dark fringe offset. Optical gain for + and – dark fringe offset have 180 degree different phase. Sensitivity seems to independent of sign and size of the dark fringe offset. Tuned SR is realized by using a fast jumping technique. Two different operation modes: resonant and non resonant RF modulation frequency. Simulation of Laser power noise DC-readout in GEO without OMC How to achieve DC-readout?