Line Features in RHESSI Spectra Kenneth J. H. Phillips Brian R. Dennis GSFC RHESSI Workshop Taos, NM 10 – 11 September 2003.

Slides:



Advertisements
Similar presentations
X-POL Solar X- ray Pol arimeter Rudawy, P., Sylwester, J., Zawistowski, T., Siarkowski, M., Bąkała, J., Podgórski, P., Kowaliński, M. and Gburek, S. Space.
Advertisements

Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
RHESSI Investigations of the Neupert Effect in Solar Flares Brian R. Dennis AAS/SPD Meeting 6 June 2002.
Physical characteristics of selected X-ray events observed with SphinX spectrophotometer B. Sylwester, J. Sylwester, M. Siarkowski Space Research Centre,
Cristina Chifor SESI Student Intern 2005 Solar Physics, Code 612 NASA/Goddard Space Flight Center Mentors: Dr. Ken Phillips & Dr. Brian Dennis FE AND FE/NI.
Page 1 Cristina Chifor (a) Ken Phillips (b), Brian Dennis (c) a) DAMTP, University of Cambridge, UK b) Mullard Space Science Lab, UK c) NASA/GSFC, Maryland,
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
RGS spectroscopy of the Crab nebula Jelle S. Kaastra Cor de Vries, Elisa Costantini, Jan-Willem den Herder SRON.
Super-Hot Thermal Plasmas in Solar Flares
The CHIANTI database Adding Ionization and Recombination to CHIANTI Dr Peter Young CCLRC/Rutherford Appleton Laboratory, UK Dr Ken Dere George Mason University,
Detailed Plasma and Fluorescence Diagnostics of a Stellar X-Ray Flare Paola Testa (1) Fabio Reale (2), Jeremy Drake (3), Barbara Ercolano (3), David Huenemoerder.
Recent advances in the CHIANTI database in the X-ray range Enrico Landi Naval Research Laboratory.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
X-ray Diagnostics and Their Relationship to Magnetic Fields David Cohen Swarthmore College.
Working Group 2 - Ion acceleration and interactions.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
The Non-Flare Temperature and Emission Measure Observed by RHESSI J.McTiernan (SSL/UCB) J.Klimchuk (NRL)
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
COOL STARS and ATOMIC PHYSICS Andrea Dupree Harvard-Smithsonian CfA 7 Aug High Accuracy Atomic Physics In Astronomy.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Spectroscopy below ~20 keV Brian Dennis RHESSI/NESSI III 3/30 – 4/01/2005.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
SPD May 25, 2005 RHESSI soft X-ray imaging spectroscopy H. Hudson & A. Caspi (SSL/UCB) And B. Dennis & K. Phillips (NASA/GSFC.
I. Balestra, P.T., S. Ettori, P. Rosati, S. Borgani, V. Mainieri, M. Viola, C. Norman Galaxies and Structures through Cosmic Times - Venice, March 2006.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
The Non-Flare Temperature and Emission Measure Observed by RHESSI and SXI J.McTiernan (SSL/UCB) J.Klimchuk (NRL) Fall 2003 AGU Meeting.
RHESSI/NESSIE, June 2003 H.S. Hudson The RHESSI 3-10 keV spectrum H. Hudson, B. Dennis, K. Phillips, R. Schwartz, D. Smith.
08__050610_SCIP/SEB_PSR_Delivery.1 Temperature and Density Diagnostics with SECCHI EUVI J.S. Newmark Naval Research Laboratory (202)
Distinguishing Between Thermal and Non-Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Robert P. Lin 1,2 1 Department of Physics,
35th COSPAR: Scientific Commission E1.9; Paris, July 2004 Identification of Lines in the Range 3.3 Å Å Observed in RESIK Spectra B. Sylwester,
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
S R CS R C 35th COSPAR Scientific Commission E1.9 Paris, July 2004 Analysis of Potassium Abundance in Selected Solar Flares J. Sylwester, B. Sylwester.
Superhot DEM (or DF?) RHESSI continuum with TRACE or EIT FeXXIV, SUMER FeXXI, GOES, or whatever.
Multi-Instrument DEM (RHESSI – GOES) Calculations J.McTiernan 5 th General RHESSI Workshop 8-June-2005.
RHESSI/GOES Xray Analysis using Multitemperature plus Power law Spectra. J.McTiernan (SSL/UCB)
Flare Thermal Energy Brian Dennis NASA GSFC Solar Physics Laboratory 12/6/20081Solar Cycle 24, Napa, 8-12 December 2008.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Evolutionary pattern of DEM variations in flare(s) B. Sylwester, J. Sylwester, A. Kępa, T. Mrozek Space Research Centre, PAS, Wrocław, Poland K.J.H. Phillips.
Conclusions We established the characteristics of the Fe K line emission in these sources. In 7 observations, we did not detect the source significantly.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
High-Resolution X-ray Spectroscopy of the Accreting Weak-Line T Tauri Star DoAr 21 Victoria Swisher, Eric L. N. Jensen, David H. Cohen (Swarthmore College),
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Spectral Analysis of Archival SMM Gamma-Ray Flare Data Gerald Share 1,2, Ronald Murphy 2, Benz Kozlovsky 3 1 UMD, 2 NRL, 3 Tel Aviv Univ. Supported under.
Diagnostics of non-thermal n-distribution Kulinová, A. AÚ AVČR, Ondřejov, ČR FMFI UK, Bratislava, SR.
Modelling the radiative signature of turbulent heating in coronal loops. S. Parenti 1, E. Buchlin 2, S. Galtier 1 and J-C. Vial 1, P. J. Cargill 3 1. IAS,
Collisional Ionization and Doppler Lines in the Ultra-compact Binary 4U years or X-ray Binaries, Chandra Workshop, July 10-12, 2012, Boston MA.
Envisaging SphinX: forward modeling of X-ray spectra M. Siarkowski Space Research Centre PAS, Solar Physics Division, Wroclaw, POLAND.
Discovery of K  lines of neutral sulfur, argon, and calcium atoms from the Galactic Center Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru, Syukyo.
EVE Sun-as-a-Star Spectra Milligan et al “Fe Cascade” for SOL
Fe XXV Kα Fe I Kα S XV Kα Strong Fe XXV Kα, S XV Kα, and Fe I Kα  the GCXE consists of High Temperature Plasma (HP), Low Temperature Plasma (LP), and.
Determining the Heating Rate in Reconnection Formed Flare Loops Wenjuan Liu 1, Jiong Qiu 1, Dana W. Longcope 1, Amir Caspi 2, Courtney Peck 2, Jennifer.
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
波長 ( Å ) 温度 (K) CCD 上での光子数 (/sec/pixel/10 44 EM) CHIANTI DB (Feldman) SXT Temperature analysis based of Chianti spectrum DB Masumi Shimojo NSRO/NAO 2002/03/22.
Flare Differential Emission Measure from RESIK and RHESSI Spectra B. Sylwester, J. Sylwester, A. Kępa Space Research Centre, PAS, Wrocław, Poland T. Mrozek.
RHESSI Observation of Atmospheric Gamma Rays from Impact of Solar Energetic Particles on 21 April 2002.
Characterizing Thermal and Non- Thermal Electron Populations in Solar Flares Using RHESSI Amir Caspi 1,2, Säm Krucker 2, Robert P. Lin 1,2 1 Department.
Discovery of K  lines of neutral S, Ar, Ca, Cr, & Mn atoms from the Galactic center with Suzaku Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru,
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
Cycle 24 Meeting, Napa December 2008 Ryan Milligan NASA/GSFC Microflare Heating From RHESSI and Hinode Observations Ryan Milligan NASA-GSFC.
RHESSI and the Solar Flare X-ray Spectrum Ken Phillips Presentation at Wroclaw Workshop “ X-ray spectroscopy and plasma diagnostics from the RESIK, RHESSI.
A deep view of the iron line and spectral variability in NGC 4051 James Reeves Collaborators:- Jane Turner, Lance Miller, Andrew Lobban, Valentina Braito,
Coronal X-ray Emissions in Partly Occulted Flares Paula Balciunaite, Steven Christe, Sam Krucker & R.P. Lin Space Sciences Lab, UC Berkeley limb thermal.
IAS 20 June 2013 Celebrating the achievements of Alan Gabriel Laboratory spectroscopy Exploring the process of dielectronic recombination S. Volonte.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Determining Abundances
Collisional lines: diagnostics & results
Chromospheric and Transition Region Dynamics
Summer School High Energy Solar Physics Thermal Radiation
Presentation transcript:

Line Features in RHESSI Spectra Kenneth J. H. Phillips Brian R. Dennis GSFC RHESSI Workshop Taos, NM 10 – 11 September 2003

Line Features in RHESSI Spectra Two features from highly ionized Fe and Ni. ~6.7 keV –Fe XXV lines and satellites –Fe XVIII – Fe XXIV lines –Fe XXVI lines at higher T (>80MK) ~8 keV –Fe XXV & Fe XXVI lines, more highly excited –Ni XXVII, Ni XXVIII lines

The Fe-line and Fe/Ni-line Features 6.7-keV feature resolved with crystal spectrometers in flares many times. 8-keV feature hardly ever seen from flares with crystal spectrometers. RHESSI is the first instrument (apart from NEAR-PIN) to see this part of the spectrum of flares. RHESSI resolution (~0.8 keV FWHM for detector 4) allows for some diagnostic work.

Chianti Spectrum, T=20MK Fe XXV +satellites Fe XXV Ni XXVII + sats Ca XIX Fe XXV Fe edge

Chianti Spectrum, T=50MK Fe XXV + sats Fe XXVI Ni XXVII + sats Fe XXV, XXVI high-n lines Ca XIX, XX lines

~6.7-keV Fe-line Feature Composition

~8-keV Fe-Ni-line Feature Composition

Temperature (T) Dependences Line features are made up of many different lines. Each line has different T dependence of intensity - G(T) functions. Thus, line feature intensity varies with T relative to continuum. Line-to-continuum ratio is best measured by equivalent width, i.e. width in keV of the line feature having intensity equal to continuum.

Equivalent Width of Fe-line Feature Chianti Coronal Fe abundance

Temperature (T) Dependences For multithermal plasma, must use differential emission measure, DEM(T). Ken Phillips has used –DEM = K T -α –DEM = K exp(-T/T 0 ) Equivalent width vs. α and T 0

Fe-line Equivalent Width vs α α DEM = A T -α cm -3 K -1 Integral from 10 to 100 MK Equivalent Width in keV/A

Fe-line Equiv. Width vs. T 0 DEM = B exp (-T/T0) cm -3 K -1 Integral from 10 – 100 MK Equivalent Width in keV/B T 0 (MK)

Intensity Ratio of the 2 Features The intensity ratio of the Fe-line to Fe/Ni-line features depends on T, but only weakly for T>40MK. For T<30MK, the Fe/Ni-line feature is weak. Thus, intensity ratio is useful as T-diagnostic for flares with T > 30 MK.

Intensity ratio of the 2 features Chianti

Fe-line Centroid Energy As T increases, Fe XXIV satellites in the Fe-line feature decrease relative to Fe XXV resonance line. Thus, centroid energy of the Fe-line feature increases with T. RHESSIs small gain change with count rate make the modest energy change difficult to measure at present.

Fe-line Feature Centroid Energy vs. T Stars – SMM/BCS Diamonds – Yohkoh/BCS Curve - Chianti

Synthesizing X-ray Spectra Chianti used for most plots here. Comparisons between Chianti and SMM/BCS spectra show significant differences. Incorrect Fe XXIII line intensities in Chianti Comparisons with APEC spectra also show differences. More lines included in APEC than in Chianti but may not be significant for RHESSIs application.

Other Atomic Codes Currently, SPEX uses –Mewe et al. (1985) data, –Arnaud & Rothenflug (1985) ion fractions, –cosmic element abundances. Mazzotta et al. (1998) ion fractions are better (rates based on better cross section data now available, some experimentally verified). With APEC and Chianti, its possible to choose ion fraction calculation and abundances.

Element Abundances in Flares RHESSI line features depend only on Fe/H and Ni/H abundances. Coronal Fe, Ni abundances are higher than photospheric by a factor of –4 (Feldman et al.) – (Fludra & Schmelzs hybrid model) –1 (Meyer). Abundances in flares may vary –from flare to flare (Feldman et al.) –during flares (Sylwester et al.).

Possible RHESSI Projects Determine flare Fe abundances –continuum + line fits to RHESSI spectra –continuum slope gives T –line feature equivalent width gives Fe abundance. Compare measured Fe abundance with nonthermal parameters, flare size, duration, etc. Images in Fe line show location of high temperature plasma.

Conclusions Diagnostic potential of Fe and Fe/Ni line complexes in RHESSI flare spectra: –Equivalent width Fe abundance with T from continuum –Fe to Fe/Ni ratio T (~30 – 40 MK) –Fe feature centroid energy T (problems) Old version of Mewe code used in SPEX is inaccurate. Chianti problems at the 20 – 30% level. APEC similar to Chianti for RHESSIs purposes. Plan to switch from Mewe to Chianti in SPEX.