ROTATIONALLY RESOLVED A 2 A 1 - X 2 E ELECTRONIC SPECTRA OF SYMMETRIC METHOXY RADICALS: CH 3 O AND CD 3 O (RI08) Laser Spectroscopy Facility Department of Chemistry The Ohio State University 6/19/2008 ~~
Subsequent talk: Isotope dependence. Asymmetrically deuterated isotopomers. Subsequent talk: Isotope dependence. Asymmetrically deuterated isotopomers. Present talk : Motivations and aims. Experiment. Doable experimental apparatus for both Laser Induced Fluorescence (LIF) and Stimulated Emission Pumping (SEP). Calibration method. Spectroscopy of CH 3 O and CD 3 O. Global fitting and spectral analysis. Model compounds for other isotopomers. Summary. Present talk : Motivations and aims. Experiment. Doable experimental apparatus for both Laser Induced Fluorescence (LIF) and Stimulated Emission Pumping (SEP). Calibration method. Spectroscopy of CH 3 O and CD 3 O. Global fitting and spectral analysis. Model compounds for other isotopomers. Summary.
Alkoxy radicals (RO·) are key components in the oxidation of hydrocarbons both in combustion and in the atmosphere. Methoxy (CH 3 O·), the smallest alkoxy radical is an interesting molecule which has very significant theoretical interest due to the Jahn-Teller effect coupled to spin-orbit interaction, the former is also relevant to conical intersection for chemical reactions. Benchmark for ab initio calculations and standard for isotopic analysis.
LIF 3 SEP Microwave 1,2 1 Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122, (1984) 2 T. Momose, Y. Endo, E. Hirota, and T. Shida, J. Chem. Phys. 88, 5338 (1988) 5 J. Liu, J. T. Yi, V. Starkursky, and T. A. Miller, 61 st International Symposium on Molecular Spectroscopy, TJ04&05 (2006). 3 D. E. Powers, M. B. Pushkarsky, and T. A. Miller, J. Chem. Phys. 106, 6863 (1997) resolution~250MHz resolution~3GHz 4 A. Geers, J. Kappert, F. Temps, and J. W. Wiebrecht, J. Chem. Phys. 101, 3618 (1994) ΔΣ=0 ΔP=0 SEP 4 ~60 cm -1 LIF 5 ΔP=±1 ΔΣ=±1 p +1 Reflection parity (p): Reflection partity (p):
| J',N', K', p'> |1/2,0,0,1> | J",P",Σ", p " > |3/2,3/2,1/2,±1> |3/2,1/2,-1/2,±1> |1/2,1/2,-1/2,±1> |5/2,3/2,1/2,±1> Pump Dump p +1 Hund’s case (a) Hund’s case (b)
CH 3 ONO (CD 3 ONO) / 1 st run Ne General Valve ControllerDG535 Pulse Generator XeF Excimer Laser XeCl Excimer Laser Ar + Laser Nd:YAG Laser Sirah Dye Laser Pulsed Dye Amplifier PC #1 PC #2 Nozzle Ring Laser T0T0 PMT SHG Frequency reading Photolysis Dump Pump Q-Switch Flash Lamp T 0 / GPIB T0T0 program synchronizing Lens
CH 3 OCD 3 O
|N',J',K',p'>→|J,P,Σ,p> |0,1/2,0,1>→|3/2,1/2,-1/2,-1>
ground state ( 2 E): a H EFF = H ROT + H COR + H SO + H SR + H JT + H CD Rotational Hamiltonian Coriolis interaction Spin-orbit interaction Spin-rotation interaction Jahn-Teller interaction Centrifugal distortion excited state ( 2 A 1 ): b,c,d H EFF = H ROT + H COR + H SR + H CD a Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122, (1984) b X. Liu, C. P. Damo, T.-Y. Lin, S. C. Foster, P. Misra, L. Yu, and T. A. Miller, J. Phys. Chem. 92, 5914 (1988) c X. Liu, S. C. Foster, J. M. Williamson, L. Yu, and T. A. Miller, Mol. Phys. 69, 357 (1990) d D. E. Powers, M. B. Pushkarsky, and T. A. Miller, J. Chem. Phys. 106, 6863 (1997)
aζ e d 1,2 = −62.24(17)cm -1 1 Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122, (1984) 2 T. Momose, Y. Endo, E. Hirota, and T. Shida, J. Chem. Phys. 88, 5338 (1988) aζ e d = − (39) cm -1 |N',J',K',p'> |1,3/2,0,-1> |J",P",Σ",p"> |3/2,3/2,1/2,±1> |J,P,Σ,p> |5/2,1/2,-1/2,±1> |3/2,1/2,-1/2,±1> |1/2,1/2,-1/2,±1> |5/2,3/2,1/2,±1> p +1 MW LIF SEP |N',J',K',p'> |1,3/2,0,-1> |J",P",Σ",p"> |3/2,3/2,1/2,±1> |J,P,Σ,p> |5/2,1/2,-1/2,±1> |3/2,1/2,-1/2,±1> |1/2,1/2,-1/2,±1> |5/2,3/2,1/2,±1> |N',J',K',p'> |1,3/2,0,-1> |J",P",Σ",p"> |3/2,3/2,1/2,±1> |J,P,Σ,p> |5/2,1/2,-1/2,±1> |3/2,1/2,-1/2,±1> |1/2,1/2,-1/2,±1> |5/2,3/2,1/2,±1>
a CH 3 O: Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122, (1984) ; CD 3 O: Y. Endo, private communication. b CH 3 O: T. Momose, Y. Endo, E. Hirota, and T. Shida, J. Chem. Phys. 88, 5338 (1988); CD 3 O: Y. Endo, private communication. c This work.
CH 3 O, bandCD 3 O, band
CH 3 OCD 3 O
Rotational Spin-Orbit Coriolis Centrifugal Distortion Spin-Rotation Jahn-Teller b This work c Fixed to ε 2a *(B/A) d 2.5σ in parentheses e T. Momose, Y. Endo, E. Hirota, and T. Shida, J. Chem. Phys. 88, 5338 (1988) a Y. Endo, S. Saito, and E. Hirota, J. Chem. Phys. 81, 122, (1984) f fixed to CD 3 F value. g Y. Endo, private communication.
LIF and SEP spectra are taken with both high-resolution (FWHM~250MHz) and high-accuracy (σ~50MHz). Direct measurement of E 1/2 component of the electronic ground state. Spin-orbit splitting ( ) Correction to parity assignments and Jahn-Teller related parameters ( ε 1, h 1, h 2 …) from the global fitting involving microwave, LIF, and SEP Available isotope (CH 3 O, CD 3 O) data for isotopic analysis. (RI09) LIF and SEP spectra are taken with both high-resolution (FWHM~250MHz) and high-accuracy (σ~50MHz). Direct measurement of E 1/2 component of the electronic ground state. Spin-orbit splitting ( ) Correction to parity assignments and Jahn-Teller related parameters ( ε 1, h 1, h 2 …) from the global fitting involving microwave, LIF, and SEP Available isotope (CH 3 O, CD 3 O) data for isotopic analysis. (RI09)
The METHOXY team: Dr. Miller Dmitry Melnik Jinjun Liu (alumni) Funding: NSF Your attention! NEXT: RI09, given by Dmitry Melnik Other Miller group members: Shenghai Wu (alumni) Patrick Rupper (alumni) John T. Yi (alumni) Jinjun Liu (alumni) Erin Sharp (alumni) Gabriel Just Phillip Thomas Linsen Pei Rabi Chhantyal-Pun
Isotopic Relations (2) Spin-RotationJahn-Teller
Isotopic Relations (1) Spin-Rotation Jahn-Teller
Decomposition of Parameters For an arbitrary parameter of the effective Hamiltonians First order correction to the vibronic energy (H ROT ) Second order perturbation theory from the matrix elements of H ROT +H SO Vibronic levels in DIFFERENT electronic states Vibronic levels in the SAME electronic states h 1, h 2 ε 1, ε 2a, ε 2b
I fl DUMP PUMP s1’s1’ I fl DUMP PUMP s1s1 s0s0 The simple normalization technique works fine except when “dump” laser excites cold band of target molecule. SEP=(S 1 -S 1 ’ ) / S 0 Stimulated Emission Pumping (SEP: Pump-Dump)
John-Teller active mode. Allowed due to 2 E symmetry of the X state and the Jahn-Teller distortion. ~ LIF Spectrum of CH 3 O * S.C.Foster, X.P.Misra, T.D.Lin, C.P.Damo, C.C.Carter, and T.A.Miller, J. Phys. Chem. 92, 5914 (1988)
a. Broader than the other three isotopomers (~250MHz). b. B. Bodermann, H. Knöckel, E. Tiemann, IodineSpec4, Toptica Photonics, Munich, Germany, (2002)
Lifting of Vibronic Degeneracy
Hamiltonian Elements, asym. terms Lifting of vibronic degeneracy: Rotational Coriolis Spin-orbit Spin-rotation
Effective Hamiltonian: H EFF = H ROT + H COR + H SR + H CD Basis sets: “Hund’s case a” used. To utilize the global fitting Can be converted to “Hund’s case b” through unitary transformation * Effective Hamiltonian: excited state ( 2 e/ 2 a) * I. Kalinovski, Ph.D. Dissertation (2001)
ν 6 ’ ( a’ ) ν 6 ” ( a” ) ν 3 ( a’ ) ν 3 ( a 1 ) Transition Types and Selection Rules CH 3 O(C 3v )CHD 2 O(C s ) M _|_ + only M _|_ only M _|_ + & M || M _|_ - & M || HD ν 6 ( e ) M _|_ & M || M _|_ P’=P”±1 M _|_ + P’=P”-1 M _|_ - P’=P”+1 M || P’=P” M _|_ P’=P”±1 M _|_ + P’=P”-1 M _|_ - P’=P”+1 M || P’=P” Selection Rules of P(~K+ Σ) Selection Rules of P(~K+ Σ)
Vibronic Interaction for 2 e- 2 e transition a 1 (Q a ) CH 3 O (C 3v ) CHD 2 O (C s ) a’ (Q a, Q x ) a” (Q y ) e (Q x, Q y ) * G. Herzberg Molecular Spectra and Molecular Structure III M _|_ + : dominant M _|_ - : moderate M || M _|_ - M ||
|N',J',K', P '> |1,3/2,0,-1> |J",K",Σ", P "> |3/2,1,1/2,±1> |J,K,Σ, P > |5/2,1,-1/2,±1> |3/2,1,-1/2,±1> |1/2,1,-1/2,±1> |5/2,1,1/2,±1> Pump Dump P +1 |1,1/2,0,-1>
|N',J',K', P '> |1,3/2,0,-1> |J",K",Σ", P "> |3/2,1,1/2,±1> |J,K,Σ, P > |5/2,1,-1/2,±1> |3/2,1,-1/2,±1> |1/2,1,-1/2,±1> |5/2,1,1/2,±1> Pump Dump P +1 |1,1/2,0,-1> Moderate-resolution pump
|N',J',K', P '> → |J,K,Σ, P > D1:|1,1/2,0,-1>→|1/2,1,-1/2,1> D2:|1,3/2,0,-1>→|1/2,1,-1/2,1> D1D2
n’=0 n”=0 + microwave selection rules (for microwave spectra) n’=1 n”=0 + 2 e- 2 e selection rules (for band) or + a’/a”- 2 e selection rules (for 6’ 1 0 band) n’=2 n”=0 + 2 a- 2 e selection rules (for band) Selection Rules Global Fitting n=2, 3 2 n=1, 6 1 n=0, Energy Levels Global Hamiltonian H 2a + T e (3 2 0 ) H 2a + T e (3 2 0 ) H 2e + T e (6 1 0 ) H 2e + T e (6 1 0 ) H 2e n =2n =2 n =1n =1 n =0n =0 n =2n =2 n =1n =1 n =0n =0 n: # vibronic level.
|J',N',K',p'> ← |J'',P'',Σ'',p''> F1:|1/2,1,0,-1>←|3/2,3/2,1/2,1> F2:|3/2,1,0,-1>←|3/2,3/2,1/2,1> F1 F2
Ar + Laser CW Ring Dye Laser Computer Etalon Chopper (2KHz) λ/2 PlatePBS PD Calibration System I2I2 50cm ~100mW 1-3 mW Lock- in Experimental Apparatus: Ring Laser & Calibration System LIF resolution (FWHM): ~250MHz LIF accuracy (1σ): ~50MHz to dye amplifier
: Hund’s case (a) J - total angular momentum of the molecule; P - projection of J onto the molecule-fixed z or a axis; Σ=±1/2 - projection of S (electron spin) onto the z or a axis; p =±1 - parity. : Hund’s case (b) J - total angular momentum of the molecule; N - rotational angular momentum; K - projection of N onto the molecule-fixed z or a axis; p =±1 - parity. Notations of Hund’s case (a) and (b)
s1s1 s0s0 SEP=s 1 /s 0 I fl DUMP PUMP s1s1 s0s0 SEP=S 1 / S 0 Dump Pump Photolysis Stimulated Emission Pumping (SEP: Pump-Dump)
|J',N',K',p'>→|J'',P'',Σ'',p''> |1/2,0,0,1>→|1/2,1/2,-1/2,-1>
SEP Spectrum of CH 3 O *LIF excited by dump laser