Stable Matching Problems with Constant Length Preference Lists Rob Irving, David Manlove, Gregg OMalley University Of Glasgow Department of Computing Science.

Slides:



Advertisements
Similar presentations
1 Stable Matching A Special Case of Stable Marriage.
Advertisements

Strong Stability in the Hospitals/Residents Problem Robert W. Irving, David F. Manlove and Sandy Scott University of Glasgow Department of Computing Science.
1 Almost stable matchings in the Roommates problem David Abraham Computer Science Department Carnegie-Mellon University Péter Biró Department of Computer.
Modelling and Solving the Stable Marriage problem using Constraint Programming David Manlove and Gregg OMalley University Of Glasgow Department of Computing.
1 Approximability Results for Induced Matchings in Graphs David Manlove University of Glasgow Joint work with Billy Duckworth Michele Zito Macquarie University.
1 Student-Project Allocation with Preferences over Projects David Manlove Gregg OMalley University of Glasgow Department of Computing Science Supported.
1 Almost stable matchings in the Roommates problem David Abraham Computer Science Department Carnegie-Mellon University, USA Péter Biró Department of Computer.
1 Student-Project Allocation with Preferences over Projects David Manlove University of Glasgow Department of Computing Science Joint work with Gregg OMalley.
Strong Stability in the Hospitals/Residents Problem
An empirical study of the stable marriage problem with ties and incomplete lists (SMTI) Ian Gent & Patrick Prosser.
Blah blah blah. Zoes shark Thanks to the conference artist Phoebe.
The Stable Marriage Problem and Constraint Programming.
LAW February A 5/3 approximation algorithm for a hard case of stable marriage Rob Irving Computing Science Department University of Glasgow (joint.
Piyush Kumar (Lecture 3: Stable Marriage) Welcome to COT5405.
Prof. Swarat Chaudhuri COMP 482: Design and Analysis of Algorithms Spring 2013 Lecture 2.
Lecture 7. Network Flows We consider a network with directed edges. Every edge has a capacity. If there is an edge from i to j, there is an edge from.
El Problema del Matrimonio Estable El Problema del Matrimonio Estable Roger Z. Ríos Programa de Posgrado en Ing. de Sistemas Facultad de Ing. Mecánica.
Triangle partition problem Jian Li Sep,2005.  Proposed by Redstar in Algorithm board in Fudan BBS.  Motivated by some network design strategy.
Naveen Garg, CSE, IIT Delhi
Matching Theory.
Matching problems Toby Walsh NICTA and UNSW. Motivation Agents may express preferences for issues other than a collective decision  Preferences for a.
Specialised N-ary Constraint for the Stable Marriage Problem By Chris Unsworth and Patrick Prosser.
What’s the problem? Something like stable marriage problem … but without sex.
Joint work with Rob Irving
Computability and Complexity 23-1 Computability and Complexity Andrei Bulatov Search and Optimization.
Stabile Marriage Thanks to Mohammad Mahdian Lab for Computer Science, MIT.
Chapter 26 of CLSR Bipartite Matching By Dr. M. Sakalli, Sources: Levitin and many other CSE, Marmara Univ. May/2009.
Lecture 4 CSE 331 Sep 9, Blog posts for lectures Starts from today See Sep 8 post on the blog.
Computational Complexity of Approximate Area Minimization in Channel Routing PRESENTED BY: S. A. AHSAN RAJON Department of Computer Science and Engineering,
A Longer Example: Stable Matching UNC Chapel HillZ. Guo.
Strong Stability in the Hospitals/Residents Problem Robert W. Irving, David F. Manlove and Sandy Scott University of Glasgow Department of Computing Science.
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
The Stable Marriage Problem
L3 #1 The Hospitals / Residents Problem and Some Extensions David Manlove University of Glasgow Department of Computing Science Supported by EPSRC grant.
Pelvic floor Specialised Constraints for Stable Matching Problems Contact details: 17 Lilybank Gardens Glasgow G12 8QQ The Problem.
Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department.
MCS 312: NP Completeness and Approximation algorithms Instructor Neelima Gupta
1 Online algorithms Typically when we solve problems and design algorithms we assume that we know all the data a priori. However in many practical situations.
Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department.
Lecture 4 CSE 331 Sep 6, TA change Swapnoneel will leave us for 531 Jiun-Jie Wang will join us.
1 The Stable Marriage Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij.
Specialised Binary Constraint for the Stable Marriage Problem with Ties and incomplete preference lists By Chris Unsworth and Patrick Prosser.
Algorithms for Student-Project Allocation
Design & Co-design of Embedded Systems Final Project: “The Match Maker” Second Phase Oral Presentation Safa S. Mahmoodian.
Review 1 Queue Operations on Queues A Dequeue Operation An Enqueue Operation Array Implementation Link list Implementation Examples.
The Stable Marriage Problem
Incentive compatibility in 2-sided matching markets
Matching Lecture 19: Nov 23.
Network Flows Chun-Ta, Yu Graduate Institute Information Management Dept. National Taiwan University.
1 CS612 Algorithms for Electronic Design Automation CS 612 – Lecture 8 Lecture 8 Network Flow Based Modeling Mustafa Ozdal Computer Engineering Department,
1 “Almost stable” matchings in the Roommates problem David Abraham Computer Science Department Carnegie-Mellon University, USA Péter Biró Department of.
Fair Shares.
Graph Algorithms Maximum Flow - Best algorithms [Adapted from R.Solis-Oba]
CSCI 256 Data Structures and Algorithm Analysis Lecture 2 Some slides by Kevin Wayne copyright 2005, Pearson Addison Wesley all rights reserved, and some.
Market Design and Analysis Lecture 1 Lecturer: Ning Chen ( 陈宁 )
Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department.
Pareto Optimality in House Allocation Problems David Manlove Department of Computing Science University of Glasgow David Abraham Computer Science Department.
Lower bound for the Stable Marriage Problem
Stable Marriage Problem
Introduction to the Design and Analysis of Algorithms
Chapter 10 Iterative Improvement
The Stable Marriage Problem
Maximum Flow - Best algorithms
Bart M. P. Jansen June 3rd 2016, Algorithms for Optimization Problems
“Almost stable” matchings in the Roommates problem
Blah blah blah.
Lecture 7 CSE 331 Sep 10, 2014.
A Grand Tour of Stable Matching Problems
Lecture 5 CSE 331 Sep 9, 2011.
Lecture 7 CSE 331 Sep 11, 2013.
Presentation transcript:

Stable Matching Problems with Constant Length Preference Lists Rob Irving, David Manlove, Gregg OMalley University Of Glasgow Department of Computing Science

SMI Formulation Set n 1 men S M = {m 1, m 2, …., m n 1 } Set n 1 men S M = {m 1, m 2, …., m n 1 } Set n 2 women S W = {w 1, w 2, …., w n 2 } Set n 2 women S W = {w 1, w 2, …., w n 2 } Each man ranks a subset of S W in strict order of preference. Each man ranks a subset of S W in strict order of preference. Each woman ranks a subset of S M in strict order of preference. Each woman ranks a subset of S M in strict order of preference. A matching M is a bijection between the men and women. A matching M is a bijection between the men and women. We say a (man, woman) pair (m,w) blocks M if: We say a (man, woman) pair (m,w) blocks M if: m prefers w to his partner in M, and m prefers w to his partner in M, and w prefers m to her partner in M. w prefers m to her partner in M. A matching that admits no blocking pair is said to be stable A matching that admits no blocking pair is said to be stable Can t improve by making an arrangement outside the matching. Can t improve by making an arrangement outside the matching. We can always find a stable matching for an instance of SMI by an adaptation of an algorithm known as the Gale/Shapley algorithm (1962). We can always find a stable matching for an instance of SMI by an adaptation of an algorithm known as the Gale/Shapley algorithm (1962). Gale and Sotomayor also proved in 1985 that for an instance of SMI all stable matchings have the same size. Gale and Sotomayor also proved in 1985 that for an instance of SMI all stable matchings have the same size.

SMTI Formalisation Set of n 1 men S M = {m 1, m 2, …., m n 1 } Set of n 1 men S M = {m 1, m 2, …., m n 1 } Set of n 2 women S W = {w 1, w 2, …., w n 2 } Set of n 2 women S W = {w 1, w 2, …., w n 2 } Each man m i ranks a subset of S W in preference order, and m i s list may contain ties. Each man m i ranks a subset of S W in preference order, and m i s list may contain ties. Each woman w j ranks a subset of S M in preference order, and w j s list may contain ties. Each woman w j ranks a subset of S M in preference order, and w j s list may contain ties. A matching M is a set of (man, woman) pairs (m,w) such that each of m and w appear in at most one pair, and m and w are on each others list. A matching M is a set of (man, woman) pairs (m,w) such that each of m and w appear in at most one pair, and m and w are on each others list. We say a (man, woman) pair (m, w) blocks M if: We say a (man, woman) pair (m, w) blocks M if: Either m is unmatched or m strictly prefers w to his partner in M, and Either m is unmatched or m strictly prefers w to his partner in M, and Either w is unmatched or w strictly prefers m to her partner in M. Either w is unmatched or w strictly prefers m to her partner in M. A matching that admits no blocking pair is said to be stable A matching that admits no blocking pair is said to be stable Can t improve by making an arrangement outside the matching. Can t improve by making an arrangement outside the matching.

Properties When no ties are allowed in a participants list: When no ties are allowed in a participants list: A stable matching for an instance of SMI can always be found using a slightly modified version of an algorithm known as the Gale/Shapley algorithm (1962). A stable matching for an instance of SMI can always be found using a slightly modified version of an algorithm known as the Gale/Shapley algorithm (1962). Gale and Sotomayor also proved in 1985 that for an instance of SMI all stable matchings have the same size. Gale and Sotomayor also proved in 1985 that for an instance of SMI all stable matchings have the same size. When ties are allowed in a participants list: When ties are allowed in a participants list: Again we can always find a stable matching for an instance of SMTI by breaking the ties arbitrarily and running the Gale/Shapley algorithm. Again we can always find a stable matching for an instance of SMTI by breaking the ties arbitrarily and running the Gale/Shapley algorithm. However stable matchings may have different sizes in this case. However stable matchings may have different sizes in this case.

SMTI Example m 1 : w 1 w 2 w 1 : (m 1 m 2 ) m 2 : w 1 w 2 : m 1 Mens preferencesWomens preferences Two possible stable matchings are: Two possible stable matchings are: M = {(m 1, w 1 )} M = {( m 1, w 2 ), (m 2, w 1 )}

The History A natural problem to consider is finding a stable matching that matches the largest number of men and women. We denote this problem by MAX-SMTI. A natural problem to consider is finding a stable matching that matches the largest number of men and women. We denote this problem by MAX-SMTI. MAX-SMTI was shown to be NP-hard by Iwama et al. in MAX-SMTI was shown to be NP-hard by Iwama et al. in A further natural restriction of MAX-SMTI is finding a maximum stable matching when the preference lists are of a constant length. A further natural restriction of MAX-SMTI is finding a maximum stable matching when the preference lists are of a constant length. This has applications for the matching of graduating medical students to hospitals posts in many countries – as typically students lists are small and of fixed length. This has applications for the matching of graduating medical students to hospitals posts in many countries – as typically students lists are small and of fixed length. The above problem is the one-to-many generalisation of SMTI called the Hospitals/Residents problem with Ties (HRT). The above problem is the one-to-many generalisation of SMTI called the Hospitals/Residents problem with Ties (HRT).

The History cont.. Mens list size Womens list size P or NP-hardCite 74NP-hard Halldórsson et al NP-hard 34NP-hard DFM & GOM 06 The following table shows a list of the known results for the case of constant length preference lists. The numbers indicate the upper bounds on the length of the preference lists. The following table shows a list of the known results for the case of constant length preference lists. The numbers indicate the upper bounds on the length of the preference lists.

Our Contribution. We show MAX-SMTI is polynomial-time solvable where mens lists are of size 2 and contain no ties, and the womens lists are of unbounded length and may contain ties. We show MAX-SMTI is polynomial-time solvable where mens lists are of size 2 and contain no ties, and the womens lists are of unbounded length and may contain ties.

(2,n)-MAX-SMTI The algorithm is presented in 3 phases. The algorithm is presented in 3 phases. Phase 1 : adapted Gale/Shapley algorithm. Phase 1 : adapted Gale/Shapley algorithm. Phase 2 : network flow stage. Phase 2 : network flow stage. Phase 3 : continuation of phase 1. Phase 3 : continuation of phase 1. An allocation (similar to matching only women can be multiply assigned) is produced by phase 1. An allocation (similar to matching only women can be multiply assigned) is produced by phase 1. Phase 2 attempts to move men from multiply assigned women to unassigned women. Phase 2 attempts to move men from multiply assigned women to unassigned women. Phase 3 may or may not be need, it reallocates men still assigned to multiply assigned women. Phase 3 may or may not be need, it reallocates men still assigned to multiply assigned women.

Phase 1 men propose to the women; men propose to the women; women hold proposals; women hold proposals; if some woman w j receives a proposal from man m i, then she deletes all strict successors of m i from her list; if some woman w j receives a proposal from man m i, then she deletes all strict successors of m i from her list; Terminates with an allocation A 1 Terminates with an allocation A 1

Phase 1 Example m 1 : w 1 w 2 w 1 : (m 1 m 2 m 3 ) m 5 m 2 : w 1 w 4 w 2 : (m 1 m 4 ) (m 3 m 5 ) m 3 : w 1 w 2 w 3 : m 4 m 4 : w 2 w 3 w 4 : m 2 m 5 : w 1 w 2 Mens preferencesWomens preferences

m 1 : w 1 w 2 w 1 : ( m 1 m 2 m 3 ) m 5 m 2 : w 1 w 4 w 2 : ( m 1 m 4 ) ( m 3 m 5 ) m 3 : w 1 w 2 w 3 : m 4 m 4 : w 2 w 3 w 4 : m 2 m 5 : w 1 w 2 Mens preferencesWomens preferences Phase 1 Example Allocation A 1 output by phase 1: A 1 = { ( m 1, w 1 ), ( m 2, w 1 ), ( m 3, w 1 ), ( m 4, w 2 ) } We note here that w 1 is multiply assigned. We note here that w 1 is multiply assigned.

Phase 2 : Network Construction Add source node s and sink node t. Add source node s and sink node t. For each multiply assigned woman w j, edge (s, w j ) with capacity 1 less than the number of assignees to w j. For each multiply assigned woman w j, edge (s, w j ) with capacity 1 less than the number of assignees to w j. For each unassigned woman w j, edge (w j, t) of capacity 1. For each unassigned woman w j, edge (w j, t) of capacity 1. Let m i be a man with 2 women left on his list. Let w j be m i s first-choice and w k be m i s second-choice. Add the edges (w j, m i ) and (m i, w k ) with capacity 1. Let m i be a man with 2 women left on his list. Let w j be m i s first-choice and w k be m i s second-choice. Add the edges (w j, m i ) and (m i, w k ) with capacity 1. Women with only 1 partner may be represented by a vertex as a result of this step. Women with only 1 partner may be represented by a vertex as a result of this step.

Phase 2 : Network st w1w1 w2w2 w3w3 w4w4 m2m2 m1m1 m4m

Phase 2 : Lists m 1 : w 1 w 2 w 1 : ( m 1 m 2 m 3 ) m 5 m 2 : w 1 w 4 w 2 : ( m 1 m 4 ) ( m 3 m 5 ) m 3 : w 1 w 2 w 3 : m 4 m 4 : w 2 w 3 w 4 : m 2 m 5 : w 1 w 2 Mens preferencesWomens preferences

Phase 2 : Max Flow st w1w1 w2w2 w3w3 w4w4 m2m2 m1m1 m4m The maximum (saturating) flow gives rise to the following: The maximum (saturating) flow gives rise to the following: m 1 being moved from w 1 to w 2 ; m 1 being moved from w 1 to w 2 ; m 4 being moved from w 2 to w 3 ; m 4 being moved from w 2 to w 3 ; m 2 being moved from w 1 to w 4. m 2 being moved from w 1 to w 4.

Phase 2 : Allocation m 1 : w 1 w 2 w 1 : ( m 1 m 2 m 3 ) m 5 m 2 : w 1 w 4 w 2 : ( m 1 m 4 ) ( m 3 m 5 ) m 3 : w 1 w 2 w 3 : m 3 m 4 : w 2 w 3 w 4 : m 4 m 5 : w 1 w 2 Mens preferencesWomens preferences In this case we have found the maximum stable matching, namely: In this case we have found the maximum stable matching, namely: M = {( m 1, w 2 ), ( m 2,w 4 ), ( m 3,w 1 ), ( m 4,w 3 )}

Phase 3 In general there may still be women who are multiply assigned after phase 2. In general there may still be women who are multiply assigned after phase 2. It can proven, however, that if the remaining ties are broken arbitrarily and we continue with phase 1, a stable matching of maximum size is obtained. It can proven, however, that if the remaining ties are broken arbitrarily and we continue with phase 1, a stable matching of maximum size is obtained.

Open Problems Is (2,n)-MAX-HRT polynomial-time solvable? Is (2,n)-MAX-HRT polynomial-time solvable? Is the generalisation of (2,n)-MAX-SMTI and (2,n)-MAX-HRT in which both sides preference lists contain ties polynomial-time solvable? Is the generalisation of (2,n)-MAX-SMTI and (2,n)-MAX-HRT in which both sides preference lists contain ties polynomial-time solvable? Finding the exact boundary between P and NP- hard cases, i.e. when both men and women have preference lists of size at most 3 and their lists contain ties. Finding the exact boundary between P and NP- hard cases, i.e. when both men and women have preference lists of size at most 3 and their lists contain ties.