Doc.: IEEE 802.11-98/82a Submission Proposal for High Data Rate 2.4 GHz PHY Variable Rate Binary Convolutional Coding on QPSK Chris Heegard & Matthew B.

Slides:



Advertisements
Similar presentations
Doc.: IEEE /389r1 Submission November 2000 Steve Halford and Mark WebsterSlide 1 Overview of OFDM for a High Rate Extension Steve Halford Mark.
Advertisements

Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Staccato UWB PHY Proposal for TG4a] Date Submitted:
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [Staccato UWB PHY Proposal for TG4a] Date Submitted:
Doc.: IEEE /0071r1 Submission January 2004 Aleksandar Purkovic, Nortel NetworksSlide 1 LDPC vs. Convolutional Codes for n Applications:
Doc.: IEEE /1510r0 Submission November 2014 Edward Au (Marvell Semiconductor)Slide 1 Summary of PAR and CSD Discussion Date: Authors:
Doc.: IEEE /282r1 Submission September 2000 S. Halford, K. Halford, and M. WebsterSlide 1 Evaluating the Performance of HRb Proposals in the Presence.
Submission May, 2000 Doc: IEEE / 086 Steven Gray, Nokia Slide Brief Overview of Information Theory and Channel Coding Steven D. Gray 1.
Doc.: IEEE /0705r2 Submission Control PHY Design for 40-50GHz Millimeter Wave Communication Systems Authors: May 2015 Slide 1Jianhan Liu (MediaTek)
Doc.: IEEE /0706r2 Submission Bandwidth and Packet Type Detection Schemes for 40-50GHz Millimeter Wave Communication Systems Authors: May 2015.
Module contents Technologies overview Spread Spectrum Modulation
February 26, 2004Slide 1 Little Wireless and Smart Antennas Little Wireless and Smart Antennas Jack H. Winters 2/26/04.
Doc.: IEEE /0489r1 Submission May 2010 Alexander Maltsev, IntelSlide 1 PHY Performance Evaluation with 60 GHz WLAN Channel Models Date:
Doc.: IEEE /396 Submission November 2000 S. Halford, P. Chiuchiolo, G. Dooley, and M. WebsterSlide 1 Implementation and Complexity Issues for.
Doc.: IEEE /180r0 Submission March 2002 Monisha Ghosh, et al., Philips Slide 1 On The Use Of Multiple Antennae For Monisha Ghosh, Xuemei.
Ger man Aerospace Center Gothenburg, April, 2007 High Spectral Efficient and Flexible Next Generation Mobile Communications Simon Plass, Stephan.
Doc.: IEEE /383 Submission November1998November 1998 Jamshid Khun-Jush, ETSI-BRANSlide 1 BRAN#11 PHY Decisions & Issues to Resolved with
Doc.: IEEE /270 Submission July 2003 Liang Li, Helicomm Inc.Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE /081r2 Submission February 2004 McCorkle, MotorolaSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Submission doc.: IEEE /384r1 Chris Heegard, Texas InstrumentsSlide 1 November 2000 Texas Instruments 141 Stony Circle, Suite 130 Santa Rosa California.
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
Doc.: IEEE /663r3 Submission May 2012 Zhanji Wu, et. Al.Slide 1 Low-rate compatible BCC for IEEE ah lowest MCS Date: Authors:
Doc.: IEEE /304 Submission September 16, 1998 AlantroSlide 1 Performance of PBCC and CCK Matthew Shoemake, Stan Ling & Chris Heegard.
Doc.: IEEE m SubmissionSlide 1 September 2012 Project: IEEE P Working Group for Wireless Personal Area Networks(WPANs) Submission.
January 2004 doc.: IEEE a Submission Slide 1 Jason Ellis, Staccato Communications Project: IEEE P Working Group for Wireless Personal.
Low-Power Wake-Up Receiver (LP-WUR) for
Doc.: IEEE a TG4a July 18th 2005 P.Orlik, A. Molisch, Z. SahinogluSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
Doc.: IEEE g Submission March 2009 Michael SchmidtSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [UWB System Design for Low Power, Precision Location.
Doc.: IEEE /0929r0 Submission August 2004 Patrik Eriksson et. al., WaveBreaker ABSlide 1 A “High Throughput” Partial Proposal Patrik Eriksson,
Doc.: IEEE r2 Submission July 12, 2000 O'Farrell & Aguado, Supergold Comm. Ltd.Slide 1 Project: IEEE P Working Group for Wireless Personal.
Doc.: IEEE Submission, Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Preliminary PHY.
Doc.: IEEE /210r0 Submission May, 2003 C. Razzell, PhilipsSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE /618 Submission November 2001 Srikanth Gummadi, TI High performance encoders: What must be added to an IEEE b transmitter Srikanth.
Doc.: IEEE /298r0 Submission March 2004 Ravi Mahadevappa, Stephan ten Brink, Realtek Slide 1 Generalized Puncturing to Eliminate Pad Bits in MIMO-OFDM.
Doc.: IEEE /159r0 Submission March 2002 S. Hori, Y Inoue, T. Sakata, M. Morikura / NTT. Slide 1 System capacity and cell radius comparison with.
Doc.: IEEE g Submission March 2009 Michael SchmidtSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE /392 Submission November 2000 K. Halford, S. Halford and M. Webster, IntersilSlide 1 OFDM System Performance Karen Halford, Steve Halford.
Doc.: IEEE /418 Submission November 2000 Niels Van Erven, 3ComSlide 1 Suggested Approach for 22 Mbps b Implementation Niels Van Erven 3Com.
Doc.: IEEE /229r1 Submission March 2004 Alexandre Ribeiro Dias - Motorola LabsSlide 1 Multiple Antenna OFDM solutions for enhanced PHY Presented.
Doc.: IEEE /107r1 Submission March 2003 Francois Chin, Madhukumar, Xiaoming Peng, Sivanand, I 2 RSlide 1 Project: IEEE P Working Group for.
Introduction to OFDM and Cyclic prefix
July 2009 Slide 1 Michael McLaughlin, DecaWave IEEE f Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: IEEE /446r0 Submission July 2001 B.Carney, et. al. - Texas Instruments, Inc.Slide 1 Attaining >75% Acceptance: A Potential Consensus Solution.
Doc.: IEEE /257 Submission Slide 1 May 2001 Coffey et al, Texas Instruments Multipath comparison of IEEE802.11g High Rate Proposals Sean Coffey,
doc.: IEEE <doc#>
<month year> <doc.: IEEE doc>
doc.: IEEE <doc#>
July 12, 2000 doc.: IEEE <00210> March 2001
July 12, 2000 doc.: IEEE <00210> March 2001
PBCC-22 Chris Heegard, Ph.D.,
PBCC-22 Chris Heegard, Ph.D.,
Towards IEEE HDR in the Enterprise
<month year> doc.: IEEE < e>
November 18 March 2009 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Multi-Rate PHY Proposal for the.
doc.: IEEE <doc#>
The PBCC 22 Mbps Extension of IEEE b
Reed-Solomon Coding for IEEE
Comparison of IEEE g Proposals: PBCC, OFDM & MBCK
Submission Title: [Harmonizing-TG3a-PHY-Proposals-for-CSM]
Higher Rate b: Double the Data Rate
July 12, 2000 doc.: IEEE <00210> July 12, 2000
May 203 doc.: IEEE r1 May 2003 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG3a Comparison.
Date Submitted: [March, 2007 ]
doc.: IEEE <doc#>
A Proposed Scrambling Vector for the CCK Blockcode
7-July-2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [DecaWave Proposal for TG3c Alternative PHY]
Sean Coffey, Ph.D., Chris Heegard, Ph.D.
120 MHz PHY Transmission Date: Authors: January 2010
9-July-2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [DecaWave Proposal for TG3c Alternative PHY]
May 203 doc.: IEEE r2 May 2003 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [TG3a Comparison.
Presentation transcript:

doc.: IEEE /82a Submission Proposal for High Data Rate 2.4 GHz PHY Variable Rate Binary Convolutional Coding on QPSK Chris Heegard & Matthew B. Shoemake Alantro Communications

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 2 Transmitter & Receiver Variable Rate BCC QPSK Modulator RF Upconverter/ Amplifier Data Source MAC Interface RF Pre-Amp/ Down Converter QPSK Demodulaor/Equalizer BCC Decoder Data Sink MAC Interface

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 3 Robust Coding 64 state BCC (binary convolutional code) with punctured rate (uncoded) 1, 2, (coded) 2.75, 5.5, 11, 14.3, 16.5, 17.6, 18.3 and Mbps primary rate: 11 Mbps with +2dB Es/No over 2Mbps DS- PHY (+500% data) 5.5 Mbps with -1.2dB Es/No over 2Mbps DS-PHY (+275% data) More coding gain can save power at transmitter

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 4 Backward Compatibility QPSK modulation Channelization –11 Msps Symbol (Chip) Rate –30 MHz Bandwidth Existing RF, Antenna, MAC Preamble –Existing preamble most compatible, less data/estimation efficient high performance preamble

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 5 Complexity Estimates of 76k-95k gates –modest in terms of state-of-the art technology today –estimates based on preliminary HDL design (portable) Power management will reduce average power usage (modules with have sleep mode, CMOS) Technical feasibility demonstrated; at least one vendor has already agreed to deploy the system A low complexity solution that is not robust will hurt the possibility of exciting growth in the WLAN market -we all lose...

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 6 BCC’s in Wireless Systems The use of BCC’s in wireless communications is not a new idea BCC’s have been proven effective in wireless systems with multipath, and they have been implemented as commercial products IS-95 standard for digital CDMA cellular phones uses a 256-state BCC GSM standard uses a four state punctured BCC Satellite systems, such as the small disk digital TV systems (e.g., DirectTV & Primestar) always deploy such a BCC In addition, BCC’s have been proposed for the A (5.0 GHz) systems

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 7 Processing Gain

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 8 AWGN Performance Detection Complexity

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 9 PER versus Trms

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 10 PER, 64 Byte Packets, Primary (11Mbps) Rate, Multipath Trms = 25, 50, 100, 150, 200, 250, 350, 450, 550 ns

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 11 PER, 1000 Byte Packets, Primary (11Mbps) Rate, Multipath Trms = 25, 50, 100, 150, 200, 250, 350, 450, 550 ns

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 12 PER, 64 Byte Packets, Variable Rate, AWGN, Es/No

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 13 PER, 64 Byte Packets, Variable Rate, AWGN, Eb/No

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 14 PER, 1000 Byte Packets, Variable Rate, AWGN, Es/No

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 15 PER, 1000 Byte Packets, Variable Rate, AWGN, Eb/No

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 16 Cell Planning

doc.: IEEE /82a Submission March 1998 Chris Heegard & Matthew Shoemake, Alantro CommunicationsSlide 17 Summary 64 state BCC –Coding Gain for Robust Performance –Variable Rate –Reasonable complexity Adaptive Equalizer –Robust multipath tolerance –Combines well with BCC –Reasonable complexity Backward Compatible –Realistic upgrade path –Uses existing RF/Antenna, MAC Ongoing HDL Design