Development of super module structures at Glasgow Calum I. Torrie 20 th April 2007.

Slides:



Advertisements
Similar presentations
VELO Status at Liverpool T. Bowcock. Prototype Module(1) Mechanical Design Several different options Reduce complexity Dead reckoning.
Advertisements

1 New build-up technique with copper bump AGP Process.
Detector module development for the CBM Silicon Tracking System Anton Lymanets for the CBM collaboration Universität Tübingen, Kiev Institute for Nuclear.
ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
LCWS 31/5/2007Erik Johnson STFC,RAL1 ILC Vertex Detector Mechanical Studies Erik Johnson On behalf of the LCFI collaboration STFC, Rutherford Appleton.
Analysis of Simple Cases in Heat Transfer P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Gaining Experience !!!
1 Thermal Modeling Syracuse University HEP Group Brian Maynard Steven Blusk.
Mechanical Status of ECAL Marc Anduze – 30/10/06.
Outer Stave Prototype Update E. Anderssen, M. Cepeda, M. Garcia-Sciveres, M. Gilchriese, N. Hartman, J. Silber LBNL W. Miller, W. Shih Allcomp, Inc ATLAS.
1 Outer Tracker Mechanics, indico: May 2014, A.Onnela 21 May 2014 Thermally conductive carbon-fibre composite material for module and mechanics.
Pixel Upgrade Local Supports Based on Thermally Conducting Carbon Foam E. Anderssen, M. Cepeda, S. Dardin, M. Garcia-Sciveres, M. Gilchriese, N. Hartman,
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
S Temple CLRC1 End-cap Mechanics FDR Cooling Structures Steve Temple, RAL 1 November 2001.
SVX4 chip 4 SVX4 chips hybrid 4 chips hybridSilicon sensors Front side Back side Hybrid data with calibration charge injection for some channels IEEE Nuclear.
17/06/2010UK Valencia RAL Petals and Staves Meeting 1 DC-DC for Stave Bus Tapes Roy Wastie Oxford University.
Thomas Jefferson National Accelerator Facility Page 1 IPR October Independent Project Review of 12 GeV Upgrade Jefferson Lab October 18-20,
26 April 2013 Immanuel Gfall (HEPHY Vienna) Belle II SVD Overview.
1 VI Single-wall Beam Pipe tests M.OlceseJ.Thadome (with the help of beam pipe group and Michel Bosteels’ cooling group) TMB July 18th 2002.
1 3/24/05Bruce C. Bigelow -- UM Physics Hexapod Detector Mounts B. C. Bigelow, UM Physics 3/24/05.
ILC Vertex Tracker Ladder Studies At LBNL M Battaglia, D Contarato, L Greiner, D Shuman LBNL, Berkeley.
M. Gilchriese SLHC Pixel Local Supports Based on Thermally Conducting Carbon Foam E. Anderssen, M. Cepeda, S. Dardin, M. Garcia-Sciveres, M. Gilchriese,
, T. Tischler, CBM Collaboration Meeting, GSI Status MVD demonstrator: mechanics & integration T.Tischler, S. Amar-Youcef, M. Deveaux, D. Doering,
VXD Mechanical R&D at the University of Washington H. Lubatti, C. Daly, W. Kuykendall LCRD in conjunction with Fermilab, SLAC.
ITER test plan for the solid breeder TBM Presented by P. Calderoni March 3, 2004 UCLA.
Mechanical Status of EUDET Module Marc Anduze – 05/04/07.
Low mass carbon based support structures for the HL-LHC ATLAS pixel forward disks R. Bates* a, C. Buttar a, I. Bonad a, F. McEwan a, L. Cunningham a, S.
VG1 i T i March 9, 2006 W. O. Miller ATLAS Silicon Tracker Upgrade Upgrade Stave Study Topics Current Analysis Tasks –Stave Stiffness, ability to resist.
Y. Ikegami, T. Kohriki, S. Terada Y. Unno (KEK), K. Hara (Univ. of Tsukuba) G. Barbier, F. Cadoux, A. Clark, D. Ferrere, S. Gonzalez-Sevilla, D. La Marra,
BTeV Pixel Substrate C. M. Lei November Design Spec. Exposed to >10 Mrad Radiation Exposed to Operational Temp about –15C Under Ultra-high Vacuum,
Thermal & Mechanical Support for Diamond Pixel Modules Justin Albert Univ. of Victoria Nov. 6, 2008 ATLAS Tracker Upgrade Workshop.
The Mechanical Structure for the SVD Upgrade
M. Gilchriese U.S. Pixel Mechanics Overview M. G. D. Gilchriese Lawrence Berkeley National Laboratory April 2000.
W.O. Miller i T i VG 1 Two Pixel Configurations Under Study First: A Monolithic Integrated Structure First: A Monolithic Integrated Structure –Axial array.
Modelling the damage to carbon fibre composites due to a lightning strike Please use the dd month yyyy format for the date for example 11 January 2008.
1 VI Single-wall Beam Pipe Option: status and plans M.Olcese TMB June 6th 2002.
Thin ladder development 28/3/2006. Targets Aiming for 0.1 % X 0 Uniformity over full ladder Compatibility with wire and bump bonding Provision for optical.
Jefferson Lab Muon Collider Design Workshop December 2008 Lithium Lens for Muon Final Cooling UCLA K. Lee, D. Cline and A. Garren.
Pixel Upgrade Carbon Foam and Outer Stave Update E. Anderssen, M. Cepeda, M. Garcia-Sciveres, M. Gilchriese, T. Johnson, J. Silber Lawrence Berkelely National.
Jan. 28, 2014W. Bertl, PSI BPIX Cooling Status W. Bertl, PSI.
TC Straw man for ATLAS ID for SLHC This layout is a result of the discussions in the GENOA ID upgrade workshop. Aim is to evolve this to include list of.
Thermal Model of Pixel Blade Conceptual Design C. M. Lei 11/20/08.
Walter Sondheim 6/9/20081 DOE – Review of VTX upgrade detector for PHENIX Mechanics: Walter Sondheim - LANL.
Marc Anduze – CALICE Meeting – KOBE 10/05/07 Mechanical R&D for Technological EUDET ECAL Prototype.
VELO upgrade news 19 January VELO Upgrade Survey  Not yet filled in, but last answers arriving in the next 24 hours....!  Hope to soon appoint.
Upgrade PO M. Tyndel, MIWG Review plans p1 Nov 1 st, CERN Module integration Review – Decision process  Information will be gathered for each concept.
Pixel upgrade test structure: CO 2 cooling test results and simulations Nick Lumb IPN-Lyon MEC Meeting, 10/02/2010.
Cooling of GEM detector CFD _GEM 2012/03/06 E. Da RivaCFD _GEM1.
Integration of the MVD Demonstrator S. Amar-Youcef, A. Büdenbender, M. Deveaux, D. Doering, J. Heuser, I. Fröhlich, J. Michel, C. Müntz, C. Schrader, S.
10 September 2010 Immanuel Gfall (HEPHY Vienna) Belle II SVD Upgrade, Mechanics and Cooling OEPG/FAKT Meeting 2010.
(Tim Jones).  Who am I? ATLAS-UK Tracker Upgrade work-package leader for WP4 (Mechanics)  Materials, Cooling, Stave Core Assembly, Module Mounting,
1 1F.Bosi, M.Massa, SuperB Meeting, Isola d’Elba, May 31, 2008 Update on Thin Mechanics/Cooling R&D for the Layer 0 of the SuperB Factory F. Bosi - M.
1 Disk Sectors Integrated support and cooling for disk modules. Each sector has 6 modules Number of sectors is 2x9+4x8=50. Fabrication of all sectors in.
Epument Girder simulation and Module Showroom upgrade For CLIC meeting 2015 Petri Tikka, Helsinki Institute of Physics focusing on exploring the possibilities.
B [OT - Mechanics & Cooling] Stefan Gruenendahl February 2, 2016 S.Grünendahl, 2016 February 2 Director's Review -- OT: Mechanics &
FPIX Upgrade – Status of CO 2 Cooling Studies S.Grünendahl, FNAL for the FPIX Upgrade Mechanical Group H. Cheung, G. Derylo, S.G., S. Kwan, C.M. Lei, E.
Marc Anduze – EUDET Meeting – PARIS 08/10/07 Mechanical R&D for EUDET module.
Upgrade plans for ATLAS. Nigel Hessey (Nikhef) is overall ATLAS upgrade coordinator.
P. Sutcliffe Liverpool University
Detector building Notes of our discussion
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
July 2, 2007 ID CERN S. Terada KEK Module and Service Structure Designs -Super module conceptual design- - FEA thermal analyses- -Test of angled.
Local Supports for Inclined Layout: CERN Update
Micro-channel Cooling
Hybrid Pixel R&D and Interconnect Technologies
SILICON PIXELS DETECTOR
ALICE PD group meeting Andrea Francescon.
Phase 2 Outer Tracker Module analysis
WG4 – Progress report R. Santoro and A. Tauro.
Hybrid Mechanical/Thermal Design ideas
Table 3. Main properties of the thin brass electrode
Presentation transcript:

Development of super module structures at Glasgow Calum I. Torrie 20 th April 2007

Development of super module structures at Glasgow For the sLHC Si tracker upgrade, the Glasgow group will contribute to the development of the supermodule mechanical and thermal design and prototyping of the structures. Design studies will be made using FEA analysis of different designs based on different support materials (eg carbon fibre and SiC cernamic) [this uses info from QMW thermal material project] to evaluate the thermal and mechanical behaviour of the prototypes. The thermal studies will look at the heat flow from the modules to the cooling fluid with the aim of optimizing the sensor temperature. The mechanical properties of the resulting design based on the optimization of the thermal properties can be studied, again using FEA, to evaluate the stablility, mass and strength of the structure.

Development of super module structures at Glasgow We also want to build prototypes to investigate the engineering feasibility of the best designs for a given material. In the first instance we want to look at a SiC ceramic. This material has been developed for lightweight mirror and space applications. –A structure can be fabricated as a carbon greenbody and is then made into a SiC ceramic by mixing with liquid Si. –This has the potential to allow the construction of complex supermodules support structures to be fabricated with e.g. integrated cooling pipes, having the correct thermal and mechanical properties. We are therefore bidding for funds to purchase fabricate test structure based on this material. This study would be carried out in collaboration with ATC Edinburgh as they are investigating this material for future large telescopes. We are currently investigating UK companies that might be able to fabricate the test structures. The prototypes will be evaluated in the laboratory to benchmark the FEA studies using dummy modules to provide a realistic heat load.

Tests FEA –Using ANSYS Classic and ANSYS Workbench Material properties –Thermal and mechanical e.g. Thermal Conductivity & Breaking Stress –Measure Thermal Conductivity »Temp range -50 oC to 300 oC –Ordered Material CSiC (Xycarb, Holland) CeSiC (ECM, Germany) –Proof samples Stainless Steel & Aluminuim Silicon

Samples

The Expt

Insert picture / info re: 2 samples

Liam Surface Characterisation Flatness Reflectivity Surface profile –Machined feature Surface details –SEM

Cryo Thermal Conductivity Heat capacity CTE –Maybe! –Refer to talk from KT in Edinburgh!

C-SiC Currently investigating C-SiC –SiC ceramic –Manufacture green bodies from various carbon fibre type materials –Infiltrate with Si by gas or liquid –Good combination of mechanical and thermal properties –Being investigated for telescope and spacecraft engineering

C-SiC properties Density: 2.65gcm -3 Thermal conductivity: 180WmK -1 …… Typical thickness > 1cm –Can it be made thinner?

Glasgow activities: Material properties Evaluate mechanical and thermal properties –Mechanical properties: UMT setup available –Thermal properties: setup measurement system for thermal conductivity in lab – as used on TPG spines (H-G Moser et al) –Sample designs developed Talking to manufacturers –Getting samples from Xycarb and ECM Also investigating bonding –Manufacture of complex structures

Glasgow Activities: FEA Conceptual module –Similar to concept presented at Genoa –Investigate thermal and mechanical behaviour of C-SiC –Solidworks ( ANSYS) –Can a baseline module be agreed to allow common studies? –Module now in ANSYS (with help from Liverpool)

Plans Measure thermal and mechanical properties of samples Talk to manufacturers: –What can be made (thin layers and complex structures?) –Variation of properties with processing Develop FEA analysis with C-SiC

Control chips 6x6mm 2 P=1W 14 x ro chips 6x6mm 2 P=0.5W/chip Fan-ins, Al on glass 1792 strips of Al 20 m wide x 1 mx10mm long 40mm 30mm 2x Si detector 30mm x 90mm x 300 m Basic layout of module element Top view Bond wires: Ro chip -> fanin -> Si Bond wires: 10mm x 25 m diameter Al Kapton substrate for hybrid Conceptual module

90mm Carbon/Si support structure 10x10mm 2 Kapton substrate for hybrid 40mmx90mmx0.5mm 14 x ro chips 6x6mm 2 P=0.5W/chip 2x Si detector 30mm x 90mm x 300 m Cooling pipes 4mm diameter Carrying coolant at -40 o C ->-20 o C Bond wires 5mm

Integrated Structures Alternative to individual rigid modules on a rigid support: super-modules (or staves) plus end- plates. Minimize heat flow path lengths Eliminate mechanical redundancy Integrate support, cooling, electrical services –Increased integration implies decreased material Assembly sites build, test, & deliver these units –Final assembly is simplified Include alternative powering schemes – reduce services Create higher-value elements & assume greater risk

Thermal/Mechanical R&D Goals Develop long structures with low sag and low X 0 percentages Understand & optimize temperature differentials & distortions Accommodate moving silicon temperature specifications and coolant properties Berkeley efforts are following the TMG program in the areas of –High TC materials –Thermal interface materials –Thermal resistance evaluations –Small and large prototypes –Thermal and mechanical simulations