Objectives Solve equations in one variable that contain absolute-value expressions.

Slides:



Advertisements
Similar presentations
Solving Absolute-Value Equations
Advertisements

Solving Absolute Value Equations
Recall that the absolute value of a number x, written |x|, is the distance from x to zero on the number line. Because absolute value represents distance.
Algebra 1 Chapter 3 Section 7.
3-7 Solving Absolute-Value Inequalities Warm Up Lesson Presentation
 From here to there and back again  Counts steps  Measures distance.
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
2-8 Solving Absolute-Value Equations and Inequalities Warm Up
Warm Up  – Evaluate.  (0.29)
Objectives Solve compound inequalities in one variable involving absolute-value expressions.
 .
Objectives Solve compound inequalities.
Solving Absolute Value Equations and Inequalities
Sec. 1-4 Day 2 HW pg (42-46, 53, 62-63, 67, 71-72)
A disjunction is a compound statement that uses the word or.
Holt McDougal Algebra 1 Solving Two-Step and Multi-Step Equations Warm Up Evaluate each expression –3(–2) 2. 3(–5 + 7) – 4(7 – 5) Simplify.
Objectives Solve equations in one variable that contain absolute-value expressions.
3-7 Solving Absolute-Value Inequalities Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Objectives Solve compound inequalities in one variable involving absolute-value expressions.
Objective SWBAT solve absolute value equations.. ABSOLUTE VALUE –The distance a number is away from ZERO. Distance is always positive
Chapter 2 Inequalities. Lesson 2-1 Graphing and Writing Inequalities INEQUALITY – a statement that two quantities are not equal. SOLUTION OF AN INEQUALITY.
Lesson 7. Literal Equations  I can identify literal equations.  I can rewrite and use literal equations Objectives.
Holt Algebra Solving Absolute-Value Equations and Inequalities Solve compound inequalities. Write and solve absolute-value equations and inequalities.
2-7 Solving Absolute-Value Equations Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
4.4 Absolute Value 11/14/12. Absolute Value: The distance of a number from 0 on a number line. Written as l x l Ex. |5| (distance of 5 from 0) = 5 Ex.
Holt McDougal Algebra Solving Absolute-Value Inequalities Solve compound inequalities in one variable involving absolute-value expressions. Objectives.
Solve inequalities that contain more than one operation.
Warm Up Solve each inequality. 1. x + 3 ≤ x ≤ 7 23 < –2x + 3
Lesson 1-7 Solving Absolute-Value Equations Obj: The student will be able to solve equations in one variable that contain absolute-value expressions HWK:
Algebra 2 Lesson 1-6 Part 2 Absolute Value Inequalities.
Holt McDougal Algebra Solving Equations with Variables on Both Sides Algebra 1 Review.
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
Absolute Value Equations and Inequalities Section 3-7 Part 1.
Holt McDougal Algebra Solving Equations by Adding or Subtracting Warm Up Evaluate. 1.   (0.29) Give the opposite of each number.
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
Warm Up Lesson Presentation Lesson Quiz.
Solving Absolute-Value Equations
1-7 Solving absolute value equations
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
Solving Absolute-Value Inequalities
Solving Equations with Variables on Both Sides 1-5
Lesson 1-6 Part 1 Absolute Value Equations
Absolute Value Equations and Inequalities
Drill Write the compound inequality for the following graphs.
Warm up 11/1/ X ÷ 40.
Solving 1-Step Integer Equations
2-7 Solving Absolute-Value Inequalities Warm Up Lesson Presentation
2-7 Solving Absolute-Value Inequalities Warm Up Lesson Presentation
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
Solving Equations by 2-1 Adding or Subtracting Warm Up
2-7 Solving Absolute-Value Inequalities Warm Up Lesson Presentation
Warm Up Solve for x. 1. x – y = x = 16y 3. –14 = x – 4y.
3-7 Solving Absolute-Value Inequalities Warm Up Lesson Presentation
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
2-7 Solving Absolute-Value Inequalities Warm Up Lesson Presentation
Solving Inequalities by Adding or Subtracting
Objectives Solve compound inequalities in one variable involving absolute-value expressions.
Preview Warm Up California Standards Lesson Presentation.
Solving Absolute-Value Equations
Multi-Step Inequalities
Solving Equations by 1-2 Adding or Subtracting Warm Up
2-7 Solving Absolute-Value Inequalities Warm Up Lesson Presentation
Solving Absolute-Value Equations
Learning Objective Students will be able to: Solve equations in one variable that contain absolute-value expressions.
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
Warm-Up #10 Solve and graph 5x -3 < 7 and 3x < 6
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
Solving Equations by 2-1 Adding or Subtracting Warm Up
1-7 Solving Absolute-Value Equations Warm Up Lesson Presentation
Presentation transcript:

Objectives Solve equations in one variable that contain absolute-value expressions.

Recall that the absolute-value of a number is that number’s distance from zero on a number line. For example, |–5| = 5 and |5| = 5. 5 units 5 units 6 5 4 3 2 1 1 2 3 4 5 6 For any nonzero absolute value, there are exactly two numbers with that absolute value. For example, both 5 and –5 have an absolute value of 5. To write this statement using algebra, you would write |x| = 5. This equation asks, “What values of x have an absolute value of 5?” The solutions are 5 and –5. Notice this equation has two solutions.

To Solve Absolute-Value Equations 1. Perform inverse operations to isolate the absolute value brackets 2. Remove the brackets by writing two equations (|a|=3 becomes “a = 3 or a = -3”) 3. Solve each separate equation. 4. Write your answer as a solution set (enclosed in braces {}). 5. Check both answers in the original equation.

Be sure to check both solutions when you solve an absolute-value equation. Helpful Hint |x| = 4 |x| = 4 |–4| 4 |4| 4   4 4 4 4

Additional Example 1A: Solving Absolute-Value Equations Solve the equation. |x| = 12 Think: What numbers are 12 units from 0? |x| = 12 12 units 10 8 6 4 2 4 6 8 10 12 2 12 • Case 1 x = 12 Case 2 x = –12 Rewrite the equation as two cases. The solutions are {12, –12}.

Additional Example 1B: Solving Absolute-Value Equations Solve the equation. 3|x + 7| = 24 Since |x + 7| is multiplied by 3, divide both sides by 3 to undo the multiplication. Think: What numbers are 8 units from 0? |x + 7| = 8 Case 1 x + 7 = 8 Case 2 x + 7 = –8 – 7 –7 – 7 – 7 x = 1 x = –15 Rewrite the equations as two cases. Since 7 is added to x subtract 7 from both sides of each equation. The solutions are {1, –15}.

Check It Out! Example 1a Solve the equation. |x| – 3 = 4 Since 3 is subtracted from |x|, add 3 to both sides. |x| – 3 = 4 + 3 +3 |x| = 7 Think: What numbers are 7 units from 0? Case 1 x = 7 Case 2 x = –7 Rewrite the equation as two cases. The solutions are {7, –7}.

Check It Out! Example 1b Solve the equation. 8 =|x  2.5| Think: What numbers are 8 units from 0? 8 =|x  2.5| Rewrite the equations as two cases. Case 1 8 = x  2.5 Case 2  8 = x  2.5 Since 2.5 is subtracted from x add 2.5 to both sides of each equation. +2.5 +2.5 10.5 = x +2.5 +2.5 5.5 = x The solutions are {10.5, –5.5}.

Not all absolute-value equations have two solutions Not all absolute-value equations have two solutions. If the absolute-value expression equals 0, there is one solution. If an equation states that an absolute-value is negative, there are no solutions.

Remember! Absolute value must be nonnegative because it represents a distance.

Additional Example 2A: Special Cases of Absolute-Value Equations Solve the equation. 8 = |x + 2|  8 Since 8 is subtracted from |x + 2|, add 8 to both sides to undo the subtraction. 8 = |x + 2|  8 +8 + 8 0 = |x + 2| There is only one case. Since 2 is added to x, subtract 2 from both sides to undo the addition. 0 = x + 2 2 2 2 = x The solution is {2}.

Additional Example 2B: Special Cases of Absolute-Value Equations Solve the equation. 3 + |x + 4| = 0 Since 3 is added to |x + 4|, subtract 3 from both sides to undo the addition. 3 + |x + 4| = 0 3 3 |x + 4| = 3 Absolute value cannot be negative. This equation has no solution.

Check It Out! Example 2a Solve the equation. 2  |2x  5| = 7 Since 2 is added to –|2x – 5|, subtract 2 from both sides to undo the addition. 2  |2x  5| = 7 2 2  |2x  5| = 5 Since |2x – 5| is multiplied by negative 1, divide both sides by negative 1. |2x  5| = 5 Absolute value cannot be negative. This equation has no solution.

Check It Out! Example 2b Solve the equation. 6 + |x  4| = 6 Since –6 is added to |x  4|, add 6 to both sides. 6 + |x  4| = 6 +6 +6 |x  4| = 0 x  4 = 0 + 4 +4 x = 4 There is only one case. Since 4 is subtracted from x, add 4 to both sides to undo the addition.

Pg. 57 (23-28) & Sec. 1-7 Practice B Wksht (1-15) Homework: Pg. 57 (23-28) & Sec. 1-7 Practice B Wksht (1-15)

Example 3: Writing Absolute Value Equations Write and solve an absolute value equation to find two numbers that are 5 units from 3 on the number line. Graph the solution.

Check It Out! Example 3 Write and solve an absolute value equation to find two numbers that are 2 units from 7 on the number line. Graph the solutions.

Additional Example 4: Engineering Application A support beam for a building must be 3.5 meters long. It is acceptable for the beam to differ from the ideal length by 3 millimeters. Write and solve an absolute-value equation to find the minimum and maximum acceptable lengths for the beam. First convert millimeters to meters. 3 mm = 0.003 m Move the decimal point 3 places to the left. The length of the beam can vary by 0.003m, so find two numbers that are 0.003 units away from 3.5 on a number line.

Additional Example 4 Continued 0.003 units 0.003 units 2.497 2.498 2.499 3.500 3.501 3.502 3.503 You can find these numbers by using the absolute-value equation |x – 3.5| = 0.003. Solve the equation by rewriting it as two cases. Since 3.5 is subtracted from x, add 3.5 to both sides of each equation. Case 1 x – 3.5 = 0.003 +3.5 =+3.5 x = 3.503 Case 2 x – 3.5 =–0.003 +3.5 =+3.5 x = 3.497 The minimum length of the beam is 3.497 meters and the maximum length is 3.503 meters.

Check It Out! Example 4 Sydney Harbour Bridge is 134 meters tall. The height of the bridge can rise or fall by 180 millimeters because of changes in temperature. Write and solve an absolute-value equation to find the minimum and maximum heights of the bridge. First convert millimeters to meters. 180 mm = 0.180 m Move the decimal point 3 places to the left. The height of the bridge can vary by 0.18 m, so find two numbers that are 0.18 units away from 134 on a number line.

Check It Out! Example 4 Continued 0.18 units 0.18 units 133.82 133.88 133.94 134 134.06 134.12 134.18 You can find these numbers by using the absolute-value equation |x – 134| = 0.18. Solve the equation by rewriting it as two cases. Since 134 is subtracted from x add 134 to both sides of each equation. Case 1 x – 134 = 0.18 +134 =+134 x = 134.18 Case 2 x – 134 =–0.18 +134 =+134 x = 133.82 The minimum height of the bridge is 133.82 meters and the maximum height is 134.18 meters.

Pg. 57-58 (32-38, 42, 44, 47-49) & Sec. 1-7 Practice B Wksht (16 & 17) Homework: Pg. 57-58 (32-38, 42, 44, 47-49) & Sec. 1-7 Practice B Wksht (16 & 17)