Slide 1 <Myung Lee, Yong Liu, Chunhui Zhu, Xuhui Hu, Taekyoung Kwon >

Slides:



Advertisements
Similar presentations
Slide 1 Weidong Gao(Potevio) Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Injection Locked Receiver.
Advertisements

Page 1 CONFIDENTIAL EZRadioPRO EZRadioPRO™ December 2007.
IEEE (May 2003) Low-Rate WPAN Low-Power.
Wireless Networks. Anatomy of a radio LAN The radio modem –Analog transmitter The MAC controller –Interface to transmitter –At least partly in hardware.
IEEE (ZigBee) Standard. Home Networking Automotive Networks Industrial Networks Interactive Toys Remote Metering Application Space.
Topic 3: Sensor Networks and RFIDs Part 4 Instructor: Randall Berry Northwestern University MITP 491: Selected Topics.
1 University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Wireless Sensor Networks 11th Lecture Christian Schindelhauer.
Standard for Low Rate WPAN. Home Networking Features. Wired and Wireless Networks. Advantages of Wireless. Need for low power consumption. Bluetooth:
Designing with and ZigBee
Wireless Sensors and Wireless Sensor Networks (WSN) Darrell Curry.
Performance Evaluation of IEEE
WLAN b a Johan Montelius
2.4-GHZ RF TRANSCEIVER FOR IEEE B WIRELESS LAN UF# UF#
IEEE and Zigbee Overview. Topics ZigBee Competing Technologies Products Some Motorola Projects Slide 2Joe Dvorak, Motorola9/27/05.
ZigBee.
Communication Theory as Applied to Wireless Sensor Networks muse.
2/12/20021 IEEE Wireless Local Area Networks The future is wireless Presented by Tamer Khattab and George Wong Prepared for EECE571N - Advanced.
IEEE Low-Rate Wireless PAN (LR-WPAN)
ZigBee/IEEE Overview Y. C. Tseng.
IEEE Tutorial Pat Kinney Open House June 3, 2003.
Low Power Wireless Design Dr. Ahmad Bahai National Semiconductor.
ZigBee Module 구성도. IEEE LR-WPAN  Low power consumption  Frequent battery change is not desired and/or not feasible  Low cost  Otherwise,
1 Physical Layer ผศ. ดร. อนันต์ ผลเพิ่ม Asst. Prof. Anan Phonphoem, Ph.D. Computer Engineering Department.
Orthogonal Frequency Division Multiple Access (OFDMA)
Chaitanya Misal, Vamsee Krishna ECGR-6185 Advanced Embedded Systems  Chaitanya Misal  Vamsee Krishna University of North Carolina-Charlotte ZIGBEE
IEEE 15.4k k J. Schwoerer (France Telecom) – N. Dejean (Elster)) Slide 1 Project: IEEE P Working Group for Wireless Personal Area.
Doc.: IEEE /140r0 Submission March 2001 Benno Ritter Philips SemiconductorsSlide 1 Project: IEEE P Working Group for Wireless Personal Area.
Doc.: IEEE a Submission September 2004 Dani Raphaeli, InfoRange Slide 1 Project: IEEE P Working Group for Wireless Personal Area.
IEEE Concepts 資工碩職一 周俊弘. Introduction Overview of the Emerging Standard Architecture DSSS v.s. FHSS OFDM Modulation Reference.
ID A16C: Outfitting Embedded Devices with Low Power Wireless Communications Design considerations for adding wireless communications to low power embedded.
Doc.: IEEE /337r0 Submission 9 July, 2001 James P. K. Gilb, MobilianSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Wireless Networks Instructor: Fatima Naseem Computer Engineering Department, University of Engineering and Technology, Taxila.
Architecture of an infrastructure network Distribution System Portal 802.x LAN Access Point LAN BSS LAN BSS 1 Access Point STA.
Doc.: IEEE Submission May, 2009 Samsung Electronics 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Example Wireless Networks: WaveLAN, Bluetooth Y. Richard Yang 01/26/2004.
Wireless LANs and PANs : Data Communication and Computer Networks Asst. Prof. Chaiporn Jaikaeo, Ph.D.
Doc.: IEEE /0909r0 Submission July 2012 Jong S. Baek, AlereonSlide 1 Analysis, simulation and resultant data from a 6-9GHz OFDM MAC/PHY Date:
RF Basics Raoul van Bergen by
Doc.: IEEE /138r0 Submission March 2001 Mauri Honkanen, NokiaSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
Doc.: xxxx A Sub-Committee Report September 2004 Martin et alSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Jan doc.: IEEE a H. Lee, C. Lee, D. Park, D. Sung, S. Jung, C. Jung and J. Lee Submission Slide 1 Project: IEEE P Working.
Retele de sensori 1. Freescale_Zigbee 2. Sensor acc. Freescale 3. Intelligent DC Control.
Doc.: IEEE /235r0 Submission May 2001 Philips SemiconductorsSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs)
802.11b PHY Wireless LANs Page 1 of 23 IEEE b WLAN Physical Layer Svetozar Broussev 16-Feb-2005.
Low-Power Wake-Up Receiver (LP-WUR) for
IEEE Standard The IEEE (Low Rate Wireless Personal Area Network) Standard Lance Hester Ken Cornett Florida Communication Research Lab.
Doc.: IEEE /130 Submission March 13, 2001 Hans van Leeuwen, STSSlide 1 Project: IEEE P Working Group for Wireless Personal Area Networks.
Doc.: IEEE /1324r0 November 2012 Very Low Energy Paging Date: Authors: Slide 1 S. Merlin et al.
Doc.: IEEE a Submission Januay 2005 Safavi & Lakkis, Wideband Access, Inc.Slide 1 Project: IEEE P Working Group for Wireless.
Doc.: IEEE Submission, Slide 1 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Preliminary PHY.
1 Chapter 4 MAC Layer – Wireless LAN Jonathan C.L. Liu, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida.
Communication Theory as Applied to Wireless Sensor Networks muse.
Submission Slide 1 doc.: IEEE g March 21, 2016 Joint DSSS Proposal for g Merged proposal : , , Michael.
IEEE MAC protocol Jaehoon Woo KNU Real-Time Systems Lab. KNU Real-Time Systems Lab.
Lecture 41 IEEE /ZigBee Dr. Ghalib A. Shah
박 유 진.  2.4-GHz IEEE Compliant RF Transceiver  Excellent Receiver Sensitivity ( -97dBm) and Robustness to Interference  6-mm × 6-mm QFN40.
1 March 24, 2016 By Jay, Mihai, and Ryan Wi-Fi. 2 A GENDA ❖ Overview ➢ History ➢ The Big Picture ❖ IEEE Standard ➢ Headers ➢ Payload ❖ Properties.
March 2001 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [PHY proposal for the Low Rate Standard]
ECGR-6185 Advanced Embedded Systems
Wireless Networks.
Wireless Mesh Networks
Low Power Wireless Personal Area Network (LP-WPAN)
September 18 May 2009 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: GFSK PHY proposal for Smart Utility.
Smart Homes Automation using Z-Wave Protocol
ISM Band Radio Radio Protocols and Topology
Long-Range Low-power Radio (LoRa)
May 2001 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [PHY proposal for the Low Rate Standard]
doc.: IEEE <doc#>
WUR FDMA Padding Content
November 2001 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [IEEE Overview] Date Submitted:
Presentation transcript:

Slide 1 <Myung Lee, Yong Liu, Chunhui Zhu, Xuhui Hu, Taekyoung Kwon >

Slide 2 Criteria Considered User level requirements MAC level requirements PHY level requirements

Slide b Bluetooth ( ) Axonn Battery life LongShortModerate Transmit-only: longer then 2-way 10 year at 3 minute interval Cost $5$5$20-25 $12-15 Intended cost <<$10/chip, including radio, processor and stack, excluding the antenna (Jens Parts cost 4$, Cost includes: 20 dBm output Sleep timer Xtal, RF Xtal, Antenna, EEROM CPU W/ application interface, I/O interface DC-DC converter for single battery operation Measures bat life under load, Watch dog Magnetic loop programming User Level

Slide b Bluetooth ( ) Axonn Xmission range Indoor: 250 Kbps; +0 dBm TX Outdoor: 30m typ, up to dBm, dBm Indoor: +20dBm, 2.2dBi diversity ant. Outdoor: +20dBm, 2.2dBi diversity Indoor: 720kbps; +0 dBm TX Outdoor: 30m 100m using class 1 radio (Jens Hult) Indoor: KB/s (20 dBm) Outdoor: 2400 m Data Rate 1, 2, 5.5, 11Mbps1 Mbps 19.4 Kb/s, 58.2 Kb/s, 116 Kb/s User Level (cont.)

Slide bBluetoothAxonn Data Latency* (ms) ^N [N=0,1..14] Beacon Interval 1.024N [N=1,2…2^16 -1 ] Beacon Interval Ms on short message (Latency must at least equal message length if the CRC is checked, also suggest publish the time instead of “short/long”) Security MAC level security MAC level + SEQ # Message length Up to 113 bytesUp to 2304 bytes Up to 343 bytes Up to263.5 bytes Sensors per access point 65536Not specified 7 (active) 255 (Parking mode) Not specified Code size 4KB for RFD 30KB for FFD KB2KB standard RAM size 300B for RFD 4KB for FFD 150KB256 B User Level (cont.) * Setup time is not considered

Slide b BluetoothAxonn CSMABeaconDCFPCF MAC Mechanism CSMA/CA CSMA/CA+ TDMA in GTS CSMA/ CA CSMA/CA+Pol ling FHSS+Polling (TDD) Standard Aloha with Abort (2-way devices support CSMA, poll-respond, and Xmit-listen for ACK) Association NoYesNoYes Optional Disassociation NoYesNoYes Optional Orphaning/ Reassociation NoYesNoYesNo Data Reliability Yes (MAC ACK) Channel Scan Yes YES Frequency Agility Yes NoYes MAC Level

Slide b BluetoothAxonn CSMABeaconCSMAPCF Sleeping Mode NoYesNoYes Reserved Channel NoYesNoYes Link Quality Indication Yes Synchronization* NoYesNoYes MAC Level (cont.) * TDMA mode

Slide bBluetoothAxonn Data Reliability In-band PG: 13 dB Fading margin req for specified 900 MHz: GHz: 33 dB In-band PG: 10 dB Fading margin required for specified BER: 33 dB In-band PG: 10 dB Fading Margin for specified BER :33 dB In-band PG 18 dB Fading margin required for specified BER: 10 dB (900 Mhz) Provides impulse noise rejection Xmit-only devises reject local noise (2-way devices can be jammed) Superior range provides overlapping receiver coverage Min. RX Sensitivity (dBm) 2.4 GHz PHY:-85 dBm 868/915 MHz: -92 dBm (adding a 20 dBm LNA will significantly reduce jam margin) -80 dBm-70 dBm-110 dBm at 19.2 Kbps Min. adjacent channel rejections (dB) 2.4 GHz / 915 MHz: 0 dB; 868 MHz: N/A >35 dB065 dB to 90 3 MHz PHY Level

Slide bBluetoothAxonn Max. Frequency tolerance (± ppm) ± 40 ppm± 25 ppm± 30 ppm40 PPM RX Synch. Preamble (  s) 32 bits (868 MHz: 1600μs; 915 MHz: 800μs; 2.4 GHz: 128μs) 128 bits (144  s) 68 bits (68  s) 92 bits (4740  s) Also provides: Antenna diversity Impulse noise reject Freq channel search Correlation peak optimization Xtal frequency error removal RX  TX turnaround time (  s) 12 symbol (868MHz: 600  s; 915MHz 300  s; 2.4 GHz:192  s) 5μs, 10μs220μsInstant: Xmit –only system PHY Level (cont.)

Slide bBluetoothAxonn Power consumption 60mW active 5, 60, 2000μW sleep 1.5W active, 45 mW sleep 75mW active, 60  w sleep 500 mW Active out), 15 uW sleep Frequencies MHz MHz; GHz; GHz 902 MHz ~ 928 MHz 2.4 – 2.48 GHz RF Channels 2.4GHz PHY: 16 channels; 915 MHz PHY: 10 channels 868 MHz PHY: 1 channels FHSS: 79 channels DSSS: 11 channels FHSS: 79 channels 8 (each spaced 3 MHz apart) Spread Spectrum direct sequenceFHSS/DSSSFHSS Direct Sequence + freq agile Error Detection 16 bit CRC 32 bit CRC (frames), 16 bit CRC (headers) 16bit CRC, 1/3 and 2/3 FEC 16 or 32 bit CRC + 1 bit ECC PHY Level (cont.)

Slide bBluetoothAxonn Chip Rate 868 MHz : 300 Kc/s; 915 MHz : 600 Kc/s; 2.4 GHz : 2.0 Mc/s 11Mc/s1Mc/s1.22 Mc/s Carrier Modulation 868/915MHz; BPSK; 2.4 GHz:O-QPSK FHSS: GFSK DSSS: DBPSK/DQPSK GFSKOOK/BPSK Bit Error ~SNR 0.2 dB (2.4 GHz) ~SNR 1.0, 4.5, 3.5, 7.0 dB 1, 2, 5.5, 11 Mb/s} SNR 12.5 dB1X10-3 Wireless networking standard (if used) ZigBeeWiFi Bluetooth SIG no Transmit Only nodes No Yes Max TX Power (mW) 1000 mW Regulatory Limit FHSS: 100 mW DSSS: 1000 mW Regulatory Limit 100mW Regulatory Limit 100 mW Typ, 1 W FCC limit PHY Level (cont.)

Slide 12 Sources IEEE Std IEEE Draft P /D18, February-2003 Specification of the Bluetooth System, vol. 1, December-1999 Axonn, “AUTOMATION SERIAL PROTOCOL (RF System Level Requirements)”, Document# P Prop3, Document# P Prop3A, March, 2003 “Direct input” from Britton Sanderford at Axonn, June 2003 Junko Yoshida, “ Specs near Completion for ZigBee Wireless Scheme,” EE Times, August 2002 Kenneth D. Cornett, “A Proposal for the IEEE Wireless Smart Sensor Standard”, Document# P Prop2, March, 2003 Michael R. Moore and Stephen F. Smith, Kang Lee, “The Next Step — Wireless IEEE 1451 Smart Sensor Networks”, Sensors Magazine, SEPTEMBER 2001