EPE-PEMC 20061 12th International Conference EPE-PEMC 2006 Portorož Torque Ripple Reduction by Means of a Duty- ratio Controller in a DTC-PMSM Drive Xavier.

Slides:



Advertisements
Similar presentations
IMPROVING DIRECT TORQUE CONTROL USING MATRIX CONVERTERS Technical University of Catalonia. Electronics Engineering Department. Colom 1, Terrassa 08222,
Advertisements

for traction applications
Predictive Control in Matrix Converters Marie Curie ECON2 Summer School University of Nottingham, England July 9-11, 2008 Marco Esteban Rivera Abarca Universidad.
Chang Gung University 13/07/20061 Channel Analysis and Estimation for OFDM Systems with Doppler Effect Advisor : Yung-An Kao Student : Chien-Hsin Hsu.
9.11. FLUX OBSERVERS FOR DIRECT VECTOR CONTROL WITH MOTION SENSORS
INDUCTION MOTOR Scalar Control (squirrel cage)
Hybrid Terminal Sliding-Mode Observer Design Method for a Permanent-Magnet Synchronous Motor Control System 教授 : 王明賢 學生 : 胡育嘉 IEEE TRANSACTIONS ON INDUSTRIAL.
Electric Drives FEEDBACK LINEARIZED CONTROL Vector control was invented to produce separate flux and torque control as it is implicitely possible.
Department of Electrical Engineering Southern Taiwan University Robot and Servo Drive Lab. 2015/5/19 Reduction of Torque Ripple Due to Demagnetization.
Modeling of Induction Motor using dq0 Transformations
Motors | Automation | Energy | Coatings. Howest Technical Seminar – 7 th October 2010 – Belgium Sebastião L. Nau.
Field-Oriented Control of Induction Machine
Direct Torque Control of Induction Machine
ELECTRIC DRIVES Ion Boldea S.A.Nasar 1998 Electric Drives.
Development of a Neuro Fuzzy Technique for Position Sensor Elimination in a SRM L. O. Henriques, L.G. Rolim, W. I. Suemitsu, P.J. Costa Branco.
Three-Phase Induction Motor Stator. Three-Phase Alternating Current.
PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVES (PMSM)
ECE Electric Drives Topic 12: Scalar Control of AC Induction
Hybrid Position Sensorless Control of a RSM in the rated speed range Francois Barnard Stellenbosch University Energy Postgraduate Conference 2013.
Vector Control of Induction Machines
A Shaft Sensorless Control for PMSM Using Direct Neural Network Adaptive Observer Authors: Guo Qingding Luo Ruifu Wang Limei IEEE IECON 22 nd International.
2004/01/17 Sangjin Park PREM, Hanyang University
Induction Motor Why induction motor (IM)? –Robust; No brushes. No contacts on rotor shaft –High Power/Weight ratio compared to Dc motor –Lower Cost/Power.
Fuzzy Logic Controller Base on Direct Torque Control Fuzzy Logic Controller Base on Direct Torque Control Fuzzy Logic Controller Base on Direct Torque.
1 An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor Drives 學生 : 林哲偉 學號 :M 指導教授 : 龔應時 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL.
Sliding Mode Control of Wind Energy Generation Systems Using PMSG and Input-Output Linearization Xiangjun Li, Wei Xu, Xinghuo Yu and Yong Feng RMIT University,
Southern Taiwan University of Science and Technology
Department of Electrical Engineering, Southern Taiwan University 1 A Novel Starting Method of the Surface Permanent-Magnet BLDC Motors Without Position.
Department of Electrical Engineering, Southern Taiwan University 1 A current ripple reduction of a high-speed miniature brushless direct current motor.
A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM Hongryel Kim, Jubum Son, and Jangmyung Lee, Senior Member, IEEEIEEE TRANSACTIONS.
Performance investigation of modified hysteresis current controller with the permanent magnet synchronous motor drive A.N. Tiwari1 P. Agarwal2 S.P. Srivastava2;
Sensorless Control of the Permanent Magnet Synchronous Motor Using Neural Networks 1,2Department of Electrical and Electronic Engineering, Fırat University.
研究生:林易德 指導教授 : 龔應時 學號: MA Simulink/ModelSim Co-Simulation of Sensorless PMSM Speed Controller 1.
Using Torque-Ripple-Induced Vibration to Determine the Initial Rotor Position of a Permanent Magnet Synchronous Machine Phil Beccue, Steve Pekarek Purdue.
Student: Hsin-Feng Tu Professor: Ming-Shyan Wang Date : Dec,29,2010
Speed-Sensorless Estimation for Induction motors using Extended Kalman Filters 教 授: 龔應時 學 生: 楊政達 Murat Barut; Seta Bogosyan; Metin Gokasan; Industrial.
Pulsating Signal Injection-Based Axis Switching Sensorless Control of Surface-Mounted Permanent- Magnet Motors for Minimal Zero-Current Clamping Effects.
Disturbance rejection control method
Department of Electrical Engineering Southern Taiwan University Robust Nonlinear Speed Control of PM Synchronous Motor Using Boundary Layer Integral Sliding.
Department of Electrical Engineering Southern Taiwan University of Science and Technology Robot and Servo Drive Lab. 2016/2/21 A Novel Rotor Configuration.
Department of Electrical Engineering Southern Taiwan University Industry Application of Zero-Speed Sensorless Control Techniques for PM Synchronous Motors.
A Novel Universal Sensor Concept for Survivable PMSM Drives Yao Da, Student Member, IEEE, Xiaodong Shi, Member, IEEE, and Mahesh Krishnamurthy, Senior.
Department of Electrical Engineering, Southern Taiwan University Initial Rotor Position Estimation for Sensorless Brushless DC Drives Student: G-E Lin.
Professor Mukhtar ahmad Senior Member IEEE Aligarh Muslim University
VECTOR CONTROL DRIVES OF PERMANENT MAGNET SYNCHRONOUS MOTOR
Han Ho Choi, Member, IEEE, Nga Thi-Tuy Vu, and Jin-Woo Jung IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 59, NO. 8, AUGUST 2012,pp /9/241.
SPEED CONTROL OF AN INDUCTION MOTOR DRIVE USING INDIRECT VECTOR CONTROL METHOD Presented by: Milred Millan Oram Regd. No: Branch: EE-A Guided.
Chapter 5: Speed-Torque Characteristics of Electric Motors
Unit – IV Starting and Speed control of Three phase Induction motor
Speed control of three phase induction motor
Peter Körös, Dr Istvan Szenasy, Zoltan Szeli, Dr Zoltan Varga
Adviser: Ming-Shyan Wang Student: Feng-Chi Lin
Study on maximum torque generation for sensorless controlled brushless DC motor with trapezoidal back EMF.
AC and DC motors.
Improved Speed Estimation in Sensorless PM Brushless AC Drives
Dr. Zainal salam; Power Electronics and Drives (Version 2),2002, UTMJB
FPGA DESIGN APPROACH OF DIGITAL CONTROL OF THREE-PHASE INDUCTION MOTOR
Professor: Ming-Shyan Wang Student: CIH-HUEI SHIH
CONSTRAINED NON-STATIONARY STATE FEEDBACK SPEED CONTROL OF PMSM
Field-Oriented Control of Induction Machine
Field-Oriented Control of Induction Machine
AC Drives Dr. Adel A. El-Samahy Department of Electrical Engineering University of Helwan.
Objective: The main aim of this project is to control the speed of the brush less direct current motor based on the single current sensor is proposed.
Summary of Material on Electric Drives Covered on July 24, 2019
Dynamical Operation, Vector Control, DTC and Encoder-less Operation
Electric Machine Design Course
Electric Machine Design Course
Electric Machine Design Course
Electric Machine Design Course
Electric Machine Design Course
Presentation transcript:

EPE-PEMC th International Conference EPE-PEMC 2006 Portorož Torque Ripple Reduction by Means of a Duty- ratio Controller in a DTC-PMSM Drive Xavier del Toro García (1), Antoni Arias (2), Luigi Salvatore (3) (1) University of Glamorgan, UK (2) Universitat Politècnica de Catalunya, Spain (3) Politecnico di Bari, Italy

EPE-PEMC Outline Introduction. The PMSM. DTC. Duty-ratio Control Algorithm. Simulation Results. Conclusions.

EPE-PEMC Introduction This work aims to study the application of the Direct Torque Control strategy to Permanent Magnet Synchronous Motor (PMSM). Vector Control concept (early 70s). Field Oriented Control (FOC) (Blaschke 1972). Direct Torque Control (DTC) (Takahashi 1986). Direct Self Control (DSC) was developed (Depenbrock 1988). These thecniques were first developed and applied to Induction Motors (IMs), due to their success they were then adopted in PMSM drives (Zhong 1996). The torque ripple present in DTC systems is one of the main drawbacks of this technique. A possible method to reduce the amplitude of the torque ripple is presented for DTC-PMSM drives.

EPE-PEMC The PMSM Main advantges of the PMSM: Absence of brushes and slip rings, lower maintenace required. Lower inertia and better dynamic performance. Higher efficiency, there are no rotor losses. Higher power/weight ratio. Disadvantages: Higher cost. Variation of PM properties. Applications: High acceleration and precise control required. Robotics, machine tools.

EPE-PEMC DTC High performance and simplicity. Decoupled and direct control of flux and torque. Indirect control of stator currents and voltages. Approximately sinusoidal stator fluxes and stator currents. Quick torque response. Inherent motion-sensorless control method (the motor speed is not required to achieve the torque control). Absence of coordinate transformation (required in FOC). Absence of voltage modulator, as well as other controllers such as PID and current controllers (used in FOC). Variable inverter switching frequency (depends on on the hysteresis bands, the operating point and the error level of the variables under control). Stator flux and torque estimation is required. Only the stator resistance is needed for the estimator. Low sampling period required. High torque and flux ripples (accentuated when controlling a PMSM).

EPE-PEMC DTC

EPE-PEMC Duty-ratio Control Algorithm Duty-ratio Control: A possible solution to reduce the torque ripple amplitude inherent to the DTC strategy. Requires the calculation of the duty cycle (δ = ton / Ts) to minimise the torque ripple for every sampling period. How can it be done? Analytical methods (Kang 1999). Fuzzy-logic (Bird 97). active null Ts ton

EPE-PEMC Duty-ratio Control Algorithm J. Kang and S. Sul "New Direct Torque Control of Induction Motor for Minimum Torque Ripple and Constant Switching Frequency." IEEE Trans. on Ind. Appl., vol 35, no 5, pp , September/October The duty cycle (δ) is a function of: The torque error. The torque slope produced by the active vector. The torque slope produce by the null vector. ? active null Ts ton

EPE-PEMC Duty-ratio Control Algorithm Surface-Mounted PMSM (Lsd=Lsq)

EPE-PEMC Duty-ratio Control Algorithm Active vector Null vector Requires coordinate transformation. Requires rotor speed and angle. Fixed average switching frequency Fs=1/(3Ts) active null Ts ton

EPE-PEMC Duty-ratio Control Algorithm

EPE-PEMC Results DTC 100μs DTC 50μs DTC 25μs DTC-DR 100μs

EPE-PEMC Conclusions The application of the Direct Torque Control strategy to Permanent Magnet Synchronous Motor (PMSM) has been investigated. Due to the low stator inductance torque and flux ripples are very high (when compared to the Induction Motor case). The duty-ratio control scheme has been investigated in order to reduce the torque ripple. An analytical approach has been employed based on the motor model. Torque ripple is considerably reduced. Average switching frequency is fixed in steady-state to one third of the sampling frequency. Requires coordinate transformation, rotor speed and angle.

EPE-PEMC Thanks for your attention