VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Texture Compression Martin Kraus Visualization and Interactive Systems Group, Stuttgart
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Texture Compression: Overview Contents: Requirements for texture compression S3 Texture Compression (S3TC) Vector Quantization (VQ) Implementing VQ texture compression with programmable graphics hardware Application: Volume Visualization
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Requirements for Texture Compression Encoding/compression of texture maps: – Maximize compression rates, – Minimize information loss, – User-defined trade-off. Access/decompression of texture maps: – Fast random access, – Simple decompression algorithm.
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) S3 Texture Compression (S3TC) A.k.a. DXTC in Microsoft’s DirectX API. OpenGL extension: EXT_texture_compression_s3tc. Hardware implementation in several graphics chips, e.g. – NVIDIA GeForce series, – ATI Radeon 7500.
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) S3 Texture Compression (S3TC) S3TC for RGB texture: Each block of 4 x 4 RGB pixels is encoded in 64 bits: Each 2-bit pixel code specifies the color of one pixel: color0color116 2-bit codes 16 bits (5+6+5 for RGB) 16 bits 32 bits (16 x 2 bits per pixel) pixel code0123 color0 > color1 color0color10.33 color color color color1 color0 <= color1 color0color10.5 color color1 black
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) S3 Texture Compression (S3TC) Compression ratio in this case: original RGB data of 4x4 block: 4 x 4 x 3 = 48 bytes compressed data: 64 bits = 8 bytes 6 : 1 ratio More variants for RGBA data. Advantages: – Simple encoding/decoding, – Data-independent. Disadvantages: – Moderate compression ratios, – Block-artifacts, inappropriate for non-smooth data, – Fixed compression scheme.
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Vector Quantization (VQ) Well established lossy compression technique, e.g. image formats with color palettes. See [Gersho 1992] for details about VQ. Apart from palettes seldom employed for texture maps in hardware, e.g. PowerVR architecture. Frequently employed for texture maps in software [Ning 1992, Levoy 1996].
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Vector Quantization (VQ) Image formats with palettes specify for each pixel one index into a color palette (= codebook) C1 C2 C0 C1 C0 C1 C0 index data palette (codebook) decoded data C0C1C2 012
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Vector Quantization (VQ) Instead of one 3-D vector for the RGB color of one pixel, we can also encode 12-D vectors for the RGB colors of 2x2 pixels: A1B1A2B2 C1D1C2D2 A0B0A1B1 C0D0C1D1 codebook A0B0A1B1A2B2 C0D0C1D1C2D2 012 index datadecoded data
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Vector Quantization (VQ) Compression ratio in this case: original RGB data of 2x2 block: 2 x 2 x 3 = 12 bytes index data for codebook of length 256: 1 byte 12 : 1 ratio Advantages: – Higher compression ratios, – Less compression artifacts, – Length of codebook determines quality & comp. ratio. Disadvantages: – Expensive encoding (codebook generation). – Less simple decoding.
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Implementing VQ with Prog. Graphics HW 2D texture lookup with bilinear interpolation: – Nearest-neighbor texture lookup of up to 4 indices, – Nearest-neighbor dependent texture lookup of 4 entries of the codebook, – Bilinear interpolation. Too expensive for current programmable graphics hardware. But: nearest-neighbor 2D texture lookup can be implemented with per-pixel operations of current graphics hardware, i.e. ATI Radeon 8500.
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Implementing VQ with Prog. Graphics HW Nearest-neighbor 2D texture lookup with VQ: – Lookup of index: Nearest-neighbor 2D texture lookup at (s,t) – Lookup in codebook: Nearest-neighbor, dependent 2D texture lookup at (s’,t’) – How to compute (s’,t’) ? index data t index 1 s code- book A0B0A1B1A2B2 C0D0C1D1C2D2 s’ t’ color D1
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Implementing VQ with Prog. Graphics HW Computation of (s’,t’) for codebook lookup: – Dim. of index data: N s x N t – Dim. of codebook: N c – Compute (s 0,t 0 ) : s 0 = floor ( s * N s ) / N s t 0 = floor ( t * N t ) / N t – Scale offset from (s 0,t 0 ) to (s,t) and add index : s’ = ( s - s 0 ) * N s / N c + index / N c t’ = ( t - t 0 ) * N t index data t index 1 s code- book A0B0A1B1A2B2 C0D0C1D1C2D2 s’ t’ color D1 t0t0 s0s0
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Implementing VQ with Prog. Graphics HW How to implement a formula like s 0 = floor ( s * N s ) / N s t 0 = floor ( t * N t ) / N t s’ = ( s - s 0 ) * N s / N c + index / N c t’ = ( t - t 0 ) * N t Note: N c, N s, and N t are constants; thus, 1 / N s, 1 / N t, 1 / N c, N s / N c are also constants. => Apart from floor only sums and products!
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Implementing VQ with Prog. Graphics HW Implementation of floor ( s * N s ) : 1-D functions can be implemented with 1-D textures. Apart from an addition this is a 1-D texture map for the identity function using nearest-neighbor interpolation! floor ( s * N s ) s * N s
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Implementing VQ with Prog. Graphics HW DirectX Pixel Shader 1.4 code, only for illustration tex r0,t0.xy // r0.r = index lookup (s,t) texcrd r1,t0 // r1.r = s, r1.g = t tex r2,t2.x // r2.r = s0 = floor(s * Ns) / Ns tex r3,t3.x // r3.r = t0 = floor(t * Nt) / Nt sub r2.r,r1,r2.r // r2.r = s – s0 sub r2.g,r1,r3.r // r2.g = t – t0 mul r2,r2,c1 // r2.r = (s – s0) * Ns / Nc // r2.g = (t – t0) * Nt mul r1,r0,c2 // r1.r = index / Nc // r1.g = 0 add r1,r2,r1 // r1.r = (s – s0) * Ns/Nc + index/Nc // r1.g = (t – t0) * Nt phase tex r1,r1.xy // dependent codebook lookup mov r0,r1 // set output color
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Application: Volume Visualization Approach works also with 3-D textures! It may be employed for texture-based volume visualization [Cabral 1994]. Nearest-neighbor interpolation is often acceptable for large volumes. Instead of 2 x 2 pixels, use 2 x 2 x 2 voxels. With a codebook of length 256, a RGBA- volume is reduced to bytes = 16 MBytes, i.e. it fits easily into texture memory. See [Kraus 2002] for more details.
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Application: Volume Visualization
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) Discussion Texture compression with vector quantization on programmable graphics hardware is possible. But: Only with nearest-neighbor interpolation. Main advantage compared to built-in texture compression: Programmer is in control!
VIS Group, University of Stuttgart Tutorial T4: Programmable Graphics Hardware for Interactive Visualization Texture Compression (Martin Kraus) References [Cabral 1994] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware. In Proceedings of 1994 Symposium on Volume Visualization, pages [Gersho 1992] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compresssion. Kluwer Academic Publiushers, Boston, [Kraus 2002] Martin Kraus and Thomas Ertl. Adaptive Texture Maps. In Proceedings of SIGGRAPH/Eurographics Workshop on Graphics Hardware [Levoy 1996] Marc Levoy and Pat Hanrahan. Light Field Rendering. In Proceedings of SIGGRAPH ’96, pages [Ning 1993] Paul Ning and Lambertus Hesselink. Vector Quantization for Volume Rendering. In Proceedings of 1992 Workshop on Volume Visualization, pages 69-74, 1992.