J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept 12-14 2006 1 Digital Signal Processing.

Slides:



Advertisements
Similar presentations
6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
Advertisements

Digital Filtering Performance in the ATLAS Level-1 Calorimeter Trigger David Hadley on behalf of the ATLAS Collaboration.
ESODAC Study for a new ESO Detector Array Controller.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
MICE Tracker Front End Progress Tracker Data Readout Basics Progress in Increasing Fraction of Muons Tracker Can Record Determination of Recordable Muons.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
Ph. Farthouat CERN ELEC 2002 ADC 1 Analog to Digital Conversion  Introduction  Main characteristics –Resolution –Dynamic range –Bandwidth –Conversion.
3/7/05A. Semenov Batch-by-Batch Intensity Monitor 1 Two-Channel Batch by Batch Intensity Monitor for Main Injector BBI.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
DLS Digital Controller Tony Dobbing Head of Power Supplies Group.
Prototype Test of SPring-8 FADC Module Da-Shung Su Wen-Chen Chang 02/07/2002.
SNS Integrated Control System SNS Timing Master LA-UR Eric Bjorklund.
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
NEDA collaboration meeting at IFIC Valencia, 3rd-5th November 2010 M. Tripon EXOGAM2 project Digital instrumentation of the EXOGAM detector EXOGAM2 - Overview.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
Front End Circuit.. CZT FRONT END ELECTRONICS INTERFACE CZTASIC FRONT END ELECTRONICS TO PROCESSING ELECTRONICS -500 V BIAS+/-2V +/-15V I/O signal.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
HBD FEM Overall block diagram Individual building blocks Outlook ¼ detector build.
21-Aug-06DoE Site Review / Harvard(1) Front End Electronics for the NOvA Neutrino Detector John Oliver Long baseline neutrino experiment Fermilab (Chicago)
First ideas for the Argontube electronics Shaper, simulations Block Diagram for analog path Delta Code Data Reduction Bus system, Controller Max.
Parallel Data Acquisition Systems for a Compton Camera
1 VeLo L1 Read Out Guido Haefeli VeLo Comprehensive Review 27/28 January 2003.
HBD FEE test result summary + production schedule 16mv test pulse result –5X attenuator + 20:1 resistor divider at input (to reduce the noise on the test.
Instructor: Evgeniy Kuksin Preformed by: Ziv Landesberg Duration: 1 semester.
Dec.11, 2008 ECL parallel session, Super B1 Results of the run with the new electronics A.Kuzmin, Yu.Usov, V.Shebalin, B.Shwartz 1.New electronics configuration.
Vertex 2005, Nikko Manfred Pernicka, HEPHY Vienna 1.
March 9, 2005 HBD CDR Review 1 HBD Electronics Preamp/cable driver on the detector. –Specification –Schematics –Test result Rest of the electronics chain.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
01/04/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
HBD/TPC Electronics Status Works done to for a)Prototype detector readout b)Understand packing density and heat loading issues c)Address the overall system.
Digitization in EMC simulation Dmytro Melnychuk, Soltan Institute for Nuclear Studies, Warsaw, Poland.
1 Level 1 Pre Processor and Interface L1PPI Guido Haefeli L1 Review 14. June 2002.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
HBD/TPC Electronics Status Works done to for a)Prototype detector readout b)Understand packing density and heat loading issues c)Address the overall system.
LKr readout and trigger R. Fantechi 3/2/2010. The CARE structure.
Pisa - Apr. 28th, The Trigger System Marco Grassi INFN - Pisa.
1 Carleton/Montreal Electronics development J.-P Martin (Montreal) Shengli Liu & M. Dixit (Carleton) LC TPC Meeting DESY Hamburg, 4 June 2007.
R3B - meeting April GSI Readout concepts for the CALIFA detector options dynamic range preamplifier solution digital solution digital readout chain.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
Instructor: Evgeniy Kuksin Preformed by: Ziv Landesberg Duration: 1 semester.
Institute of Basic Science Rare Isotope Science Project PANGEA P hoton detector system for A stro-science and N uclear physics with GE rmanium A rray 2015.
DAQ 1000 Tonko Ljubicic, Mike LeVine, Bob Scheetz, John Hammond, Danny Padrazo, Fred Bieser, Jeff Landgraf.
FPGA based signal processing for the LHCb Vertex detector and Silicon Tracker Guido Haefeli EPFL, Lausanne Vertex 2005 November 7-11, 2005 Chuzenji Lake,
Vladimir Zhulanov for BelleII ECL group Budker INP, Novosibirsk INSTR2014, Novosibirsk 2014/02/28 1.
Status of hardware activity in CNS Taku Gunji Center for Nuclear Study University of Tokyo 1.
DAQ and Trigger for HPS run Sergey Boyarinov JLAB July 11, Requirements and available test results 2. DAQ status 3. Trigger system status and upgrades.
Work on Muon System TDR - in progress Word -> Latex ?
DAQ ACQUISITION FOR THE dE/dX DETECTOR
DAQ (i.e electronics) R&D status in Canada
Digital Signal Processing
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
A General Purpose Charge Readout Chip for TPC Applications
Calorimeter Mu2e Development electronics Front-end Review
ETD meeting First estimation of the number of links
Production Firmware - status Components TOTFED - status
DCH FEE 28 chs DCH prototype FEE &
Design of Digital Filter Bank and General Purpose Digital Shaper
Vertex 2005 November 7-11, 2005 Chuzenji Lake, Nikko, Japan
Status of n-XYTER read-out chain at GSI
Example of DAQ Trigger issues for the SoLID experiment
Neurochip3.
BESIII EMC electronics
Presented at 2016 IEEE Nuclear Science Symposium - N28-32
PID meeting Mechanical implementation Electronics architecture
Multi Chip Module (MCM) The ALICE Silicon Pixel Detector (SPD)
Preliminary design of the behavior level model of the chip
Presentation transcript:

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Digital Signal Processing

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Selection of an appropriate sequence of transfer function for the processing Simulated ADC response ADC gain = 1000 Delta charge injection: Time Value 120 0, , , , ,2 Processed: Original: F n ; n=z,N <= FADC n ; n=z,N transfer function? Example: FADC n n=50,250 Optimized to extract physical quantities (charge, etc.)

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Example:The moving window deconvolution transfer function F[n] = a i * FADC[n-i] i=0,N For an arbitrary window of L samples : a 0 = 1 a i = 1/TAU preamp i = 1, L-1 (TAU preamp in units of the sampling period) a L = /TAU preamp Properties Transforms an exponential into a rectangular function of L points. L

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Simplified implementation in favorable cases In the previous example, a i = 1/TAU preamp i = 1, L-1 (equal weight factors) The term with identical a i ’s,: G[n] = a i * FADC[n-i] i=1,L-1 Reduces to : G[n] = G[n-1] + a * (FADC[n-1] – FADC[n-L] ) Add the new element at the head Remove the out of range element at the tail Value for the previous point A - B Accumulator += Sampling Clock G[n] Hardware implementation: Counter Constant N-1 Sampling Clock A - B Dual Port Memory Write address Read Address a * FADC[n-1] Data In a * FADC[n-L] Data Out

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Deconvolution in the presence of noise Remark: For series noise, the RMS value of the noise in the resulting function is increased by a factor SQRT(2) Note: It can be demonstrated that the transfer function shown on the next slide will yield the best estimate of the trend of the “flat” portion of the deconvolution

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Floating average (boxcar) filter applied to the deconvolution result G[n] = a j * F[n-j]; a j = 1/K j = 0, K -1 Transfer function: Example with K = 16; Note parameter K => Peaking time G[n]

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Some interesting properties of the filter L K 1- For an input step function, the resulting shape is a symetrical trapeze with a peaking time of K and a flat-top equal to L - K 2- As long as the charge collection in the detector is shorter than L - K, the pulse shape will reach its full amplitude. => NO ballistic deficit 3- The S/N ratio is slighly better than that of an analog CR-(RC)n or pseudo gaussian filter of the same FWHM.

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Performance summary of the « trapezoidal » filter - The S/N of the trapezoidal signal is a few % better than that of a pseudo-gaussian analog filter - For signal rise-times shorter than the parameter K, the filtered signal has zero ballistic deficit. (Same filtered pulse height for all rise-times) - The trapezoidal signal has no « tail ». (Good behaviour for pile-up) Other considerations: As for its analog counterpart with pole-zero suppression, the transfer function is not zero for the DC or low frequency components. It requires the equivalent of a « baseline restorer », or double sampling.

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Time measurement Example: the Constant Fraction Discriminator (CFD) Principle: Compensates for the time walk associated with the pulse height. “Black” Threshold “Blue” Threshold ΔtΔtSame for all amplitudes if Tr is constant If Tr is not constant: Use a “delay line clip” ≤ than the shortest rise time “Black” Threshold “Blue” Threshold ΔtΔtSame again! (in the case of a linear rise time) Clipped Not Clipped Threshold set at MAX * Fraction: Tr Tr1 T clipped

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Time measurement, digital CFD implementation example Step 1: Clip the raw data samples: F[n] = a i * FADC[n-i] ; (a 0 =1, a MinTr =-1) = FADC[n] – FADC[n-MinTr] i=0,N Step 2: Arm the “find Max” process when F[n] goes above a pre defined threshold (leading edge) Step 3: Find the maximum value of F[n] Step 4: Calculate the constant fraction threshold ( F[Max] * Fraction) Step 5: Produce a delayed clipped pulse shape Step 6: Find the two points of F[n] delayed on either side of the threshold level Step 7: Interpolate the value between the two points result: 1) Value of the index “n” at the crossover point 2) Time interpolation value (“vernier”) ( precision << sampling period) => “High resolution Time Stamp”

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Timing resolution in the digital CFD ΔtΔt Tr Sources of error in the presence of noise: Amplitude Time fraction threshold Error on the evaluation of the maximum = Nrms Error on the evaluation of the fraction threshold = Nrms * Fraction Error on the evaluation of the signal amplitude = Nrms S

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Timing resolution in the digital CFD (zoom) ΔtΔt Tr fraction threshold S Extra source of errors for the discrete sampling: - linear intrapolation of the rise time function Notes: - Valid for analog or digital CFD - independant of digital sampling rate to first order - Error may be much smaller than the sampling rate for large signal to noise (S/Nrms) ratios Resulting error in the evaluation of time: TError_rms = Nrms * (1+Fraction) * Tr/S error Position of the sample with no noise Position of the sample with noise nominal

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept The TIG-10 Module Characteristics: Form factor: VXI-C Interface :a) Stand-alone: VME-A24D16 :b) System: 200 MHz source synchronous LVDS Number of channels: 10 Digitizers : 100 MHz 14-bit Signal processing: Raw data - Trigger latency buffer - Data sample buffers Charge Channel: - Preamplifier decay pole deconvolution - Trapezoidal filter - Baseline restorer Timing channel - Hit detector - CFD - Trigger generate / accept logic Data flow/control: - Parameters read/write - Event builder - Communication links

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Example 4: the VF48 card, (Rev 0 shown) 48 Differencial Channels FADCs: - 10 bit, MS/sec Interfaces - Serial LVDS - VME64 Signal processing: 7 Altera Cyclone FPGAs - Raw data segments - Hit detection - Charge calculation - Time stamp - Event formatting Applications: TPC readout - ILC prototypes - TACTIC detector - PET readout Silicon and scintillation detectors readout ASIC preamp multiplexer readout (ALPHA)

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Properties of the VF48 card Form Factor: VME 6U Number of channels: 48 Number of bits: 10 (12 bits under development) Max sampling frequency: 65 MS/sec. Max number of samples/event: 2048 (for each channel) Interface:: 1) VME64X 2) Source synchronous serial, 200 mbits/sec, copper (RJ45) Common system clock: From front panel connector or serial link Local trigger signalling output: Front panel conector or serial link Trigger accept input: « « «

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Example 3, TIGRESS DAQ architecture 720 Signals + Aux Channels Local Collectors Communication links Detectors Communication links System concentrators Interface to computers Master Communication links Trigger requests, Data elements: -pulse shapes - charge - time - other “features” Event fragments, (one crystal) Sub Events,(one clover or more) Trigger decision Run control (parameters) System clock Optional logic signals TIG-10 TIG-C

J.P.Martin, Université de Montréal, ILC EndCap Meeting, Paris, Sept Example 2, TIG-C serial readout module, PCB, component layer 12 RJ45 links connector 1 RJ45 master link connector (820 Mbit/sec. Max) VME64 Altera Stratix FPGA