Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 32 LECTURE SLIDES.

Slides:



Advertisements
Similar presentations
Classification, Phylogeny, & Organization
Advertisements

AN INTRODUCTION TO ANIMAL DIVERSITY
ANIMAL DIVERSITY. YOU MUST KNOW… THE CHARACTERISTICS OF ANIMALS THE STAGES OF ANIMAL DEVELOPMENT HOW TO SORT THE ANIMAL PHYLA BASED ON SYMMETRY, DEVLOPMENT.
Infer How is the embryology of echinoderms similar to that of vertebrates? What might this similarity indicate about their evolutionary relationship.
ANIMAL DIVERSITY.
Animal Evolution Chpt. 32. Multicellular Multicellular Heterotrophic digest within body.
Chapter 32 Reading Quiz From which kingdom did animals most likely evolve? What is the only group of animals that do not possess “true tissues”? A sea.
Chapter 32: Animal Diversity By: Group D; Daniel Cazares del Castillo, Fabian Abarca, Justin Cruz, Jayce Frank, William Hoover, And Alberto Rodriguez.
1 Overview of Animal Diversity Chapter General Features of Animals Heterotrophs Multicellular Able to move from place to place Diverse in form and.
Animal Architecture Levels of organization in organismal complexity.
Introduction to Kingdom Animalia
Overview of Animal Diversity
Overview of Animal Diversity Chapter 31. Quick 9 minute Overview I will explain in detail as the presentation goes on
An Overview of Animal Phylogeny How the Animal Kingdom Evolved Chapter 32.
Introduction to Animals
Chapter 32 – Animal Diversity
Animal Body Plans Chapter 3, Zoology.
Overview of Animal Diversity
Kingdom Animalia Multicellular, heterotrophic eukaryotes
Overview of metazoan Diversity
Introduction to Animals. To be an animal means 1.Multicellular – humans have ~ trillion cells 2.Ingestive heterotroph 3.Lacking a cell wall 4.Specialization.
23.1 Animal Characteristics Animals Animal Characteristics Multicellular Heterotrophic Lack cell walls Sexual Reproduction Movement Specialization.
Animals = invertebrates and vertebrates (95% of all animals are invertebrates)
31.3 The Animal Body Plan has Undergone Many Changes
Phyla Names Body Regions and Symmetry Tissue Development and Cleavage.
Introduction to the Animal Kingdom
ANIMAL KINGDOM. Main Characteristics Multicellular eukaryotes Heterotrophs Specialized cells; most have tissues Response to stimuli by nervous and muscular.
CHARACTERISTICS OF ANIMALS: WELCOME TO YOUR KINGDOM! Adapted from Kim Foglia - April 2015.
An Introduction to Animal Diversity Chapter 32. Characteristics of Animals Multi-cellular Heterotrophic eukaryotes - ingestion Lack cell walls – collagen.
Chapter 32. Characteristics that Define Animals Nutritional modes Ingest organic molecules and digest them via enzymes Cell structure and specialization.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
Objective: Intro to Animal Diversity. Heterotrophs that ingest food Multicellular with structural proteins Develop from embryonic layers Animal Characteristics.
ANIMAL KINGDOM. MAIN CHARACTERISTICS Multicellular, eukaryotic, heterotrophs Specialized cells; most have tissues Response to stimuli by nervous and muscular.
Overview of Animal Diversity
Chapter 32 An Introduction to Animal Diversity. Modes of Nutrition Animals differ in their mode of nutrition than plants and fungi. –Animals and fungi.
Introduction to Animal Diversity Packet #76 Chapter #32.
Intro to Animal Diversity Chapter 32. Slide 2 of 17 Animalia – General Notes  1.3 million species  300K plant species  1.5 million fungi  >10 million.
Chapter 32 An Introduction to Animal Diversity
Overview of Animal Diversity
Introduction To Animal Evolution
An Introduction to Animal Diversity  What Is an Animal?  An Overview of Animal Phylogeny and Diversity  The Origins of Animal Diversity.
Chapter 32 Introduction to Animal Diversity. Animal Characteristics 1.) All are heterotrophs & must ingest food to digest it. 2.) All eukaryotic and multicellular.
Animal Body Plans and Evolution By: Mandie Hill. Features of Body Plans Levels of organization When first cells of most animals develop, they change into.
An Introduction to Animal Diversity
Chapter 32 n Introduction to Animal Evolution. Def: animal (n) Unique characteristics: n Heterotrophic eukaryotes; ingestion n Lack cell walls; collagen.
Chapter 32 ~ n Chapter 32 ~ Introduction to Animal Evolution.
Chapter 32 Introduction to Animal Evolution. I. What is an animal? A. Structure, nutrition, and life history define animals 1. Animals are multicellular,
Chapter 32 Introduction to Animal Evolution Our changing view of biological diversity.
Animal Kingdom Phylogeny - Cladogram
Introduction to Animals Symmetry, Tissues, Classification AP Biology Unit 6.
Diversity of Life - Animals- (General Features)
Overview of Animal Diversity
Tissue Complexity Most animals have closely functioning tissues.
Introduction to Animals
Multicellular eukaryotes Heterotrophy by ingestion
Lecture #14 Date ______ Chapter 32 ~ Introduction to Animal Evolution.
Animal Diversity.
Who is in the Kingdom Animalia?
Introduction to Animal Diversity
An introduction to animal diversity
Overview of Animal Diversity
Kingdom Animalia.
An Introduction to Animal Diversity
Chapter 32 ~ Chapter 32 ~ Introduction to Animal Evolution.
Introduction to Animals
Animals! Introduction.
Introduction to Animal Evolution
CHAPTER 32 AN INTRODUCTION TO ANIMAL DIVERSITY
The Origin of Animal Diversity
Evolution of the Animal Body Plan
Presentation transcript:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 32 LECTURE SLIDES

Overview of Animal Diversity Chapter 32

General Features of Animals 3

4

5

Evolution of the Animal Body Plan Five key transitions can be noted in animal evolution 1.Tissues 2.Symmetry 3.Body cavity 4.Development 5.Segmentation 6

7 Evolution of the Animal Body Plan 1. Evolution of tissues -Parazoa (Sponges – the simplest animals) lack defined tissues and organs -Have the ability to disaggregate and aggregate their cells -Eumetazoa (all other animals) have distinct and well-defined tissues -Have irreversible differentiation for most cell types

8 Evolution of the Animal Body Plan 2. Evolution of symmetry -Sponges also lack any definite symmetry -Eumetazoa have a symmetry defined along an imaginary axis drawn through the animal’s body -There are two main types of symmetry

9 Evolution of the Animal Body Plan -Radial symmetry -Body parts arranged around central axis -Can be bisected into two equal halves in any 2-D plane -Bilateral symmetry -Body has right and left halves that are mirror images -Only the sagittal plane bisects the animal into two equal halves

10 Top Bottom Back Front

11 Evolution of the Animal Body Plan Bilaterally symmetrical animals have two main advantages over radially symmetrical ones 1. Cephalization -Evolution of a definite brain area 2. Greater mobility

12 Evolution of the Animal Body Plan 3. Evolution of a body cavity -Eumetazoa produce three germ layers -Outer ectoderm (body coverings and nervous system) -Middle mesoderm (skeleton and muscles) -Inner endoderm (digestive organs and intestines) Body cavity = Space surrounded by mesoderm tissue that is formed during development

13 Evolution of the Animal Body Plan 3. Evolution of a body cavity -Three basic kinds of body plans -Acoelomates = No body cavity -Pseudocoelomates = Body cavity between mesoderm and endoderm -Called the pseudocoelom -Coelomates = Body cavity entirely within the mesoderm -Called the coelom

14

15 Evolution of the Animal Body Plan -The body cavity made possible the development of advanced organ systems -Coelomates developed a circulatory system to flow nutrients and remove wastes -Open circulatory system: blood passes from vessels into sinuses, mixes with body fluids, and reenters the vessels -Closed circulatory system: blood moves continuously through vessels that are separated from body fluids

16 Evolution of the Animal Body Plan 4. Evolution of different patterns of development -The basic Bilaterian pattern of development: -Mitotic cell divisions of the egg form a hollow ball of cells, called the blastula -Blastula indents to form a two-layer- thick ball with: -Blastopore = Opening to outside -Archenteron = Primitive body cavity

17 Evolution of the Animal Body Plan Bilaterians can be divided into two groups: -Protostomes develop the mouth first from or near the blastopore -Anus (if present) develops either from blastopore or another region of embryo -Deuterostomes develop the anus first from the blastopore -Mouth develops later from another region of the embryo

18 Evolution of the Animal Body Plan Deuterostomes differ from protostomes in three other fundamental embryological features: -1. Cleavage pattern of embryonic cells -Protostomes = Spiral cleavage -Deuterostomes = Radial cleavage -2. Developmental fate of cells -Protostomes = Determinate development -Deuterostomes = Indeterminate development

19 Evolution of the Animal Body Plan -3. Origination of coelom -Protostomes = Forms simply and directly from the mesoderm -Deuterostomes = Forms indirectly from the archenteron Deuterostomes evolved from protostomes more than 500 MYA

20

21 Evolution of the Animal Body Plan 5. Evolution of segmentation -Segmentation provides two advantages -1. Allows redundant organ systems in adults such as occurs in the annelids -2. Allows for more efficient and flexible movement because each segment can move independently Segmentation appeared several times in the evolution of animals

22 Traditional Classification of Animals Multicellular animals, or metazoans, are traditionally divided into 36 or so distinct phyla based on shared anatomy and embryology Metazoans are divided into two main branches: -Parazoa = Lack symmetry and tissues -Eumetazoa = Have symmetry and tissues -Diploblastic = Have two germ layers -Triploblastic = Have three germ layers

23 A New Look At Metazoans The traditional animal phylogeny is being reevaluated using molecular data Myzostomids are marine animals that are parasites of echinoderms -Have no body cavity and only incomplete segmentation -And so have been allied with annelids

24 A New Look At Metazoans Recent analysis of the translation machinery revealed that myzostomids have no close link to the annelids at all -Instead, they are more closely allied with the flatworms (planaria and tapeworms)

25 A New Look At Metazoans Therefore, key morphological characters used in traditional classification are not necessarily conservative Molecular systematics uses unique sequences within certain genes to identify clusters of related groups

26 A New Look At Metazoans Most new phylogenies agree on two revolutionary features: 1. Separation of annelids and arthropods into different clades 2. Division of the protostome group into Ecdysozoa and Spiralia -The latter is then broken down into Lophotrochozoa and Platyzoa

27 A New Look At Metazoans

28 Evolutionary Developmental Biology Most taxonomists agree that the animal kingdom is monophyletic Three prominent hypotheses have been proposed for the origin of metazoans from single-celled protists

29 Evolutionary Developmental Biology 1. The multinucleate hypothesis 2. The colonial flagellate hypothesis 3. The polyphyletic origin hypothesis Molecular systematics using rRNA sequences settles this argument in favor of the colonial flagellate hypothesis

30 Evolutionary Developmental Biology Molecular analysis may also explain the Cambrian explosion -The enormous expansion of animal diversity in the Cambrian period (543–525 MYA) -The homeobox (Hox) developmental gene complex evolved -Provided a tool that can produce rapid changes in body plan

31 Evolutionary Developmental Biology