Topics in Differentiation: “L’Hopital’s Rule; Indeterminate Forms”

Slides:



Advertisements
Similar presentations
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 1 Review.
Advertisements

Section 4.3 The Derivative in Graphing and Applications- “Analysis of Functions III: Rational Functions, Cusps, and Vertical Tangents”
“Before Calculus”: Families of Functions.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All.
Section 4.4 The Derivative in Graphing and Applications- “Absolute Maxima and Minima”
Integration: “Logarithmic and Other Functions Defined by Integrals”
Section 4.5 The Derivative in Graphing and Applications: “Applied Maximum and Minimum Problems”
Section 4.2 The Derivative in Graphing and Applications- “Analysis of Functions II: Relative Extrema; Graphing Polynomials”
Section 8.3 Slope Fields; Euler’s Method.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All.
Infinite Series: “The Comparison, Ratio, and Root Tests”
Section 9.1 Infinite Series: “Sequences”. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009.
Applied Calculus, 3/E by Deborah Hughes-Hallet Copyright 2006 by John Wiley & Sons. All rights reserved. Section 9.4 Computing Partial Derivatives Algebraically.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. Definition (p. 626)
SECTION 7.2 PRINCIPALS OF INTEGRAL EVALUATION: “INTEGRATION BY PARTS”
Section 9.2 Infinite Series: “Monotone Sequences”.
“Before Calculus”: Exponential and Logarithmic Functions
Section 4.1 The Derivative in Graphing and Applications- “Analysis of Functions I: Increase, Decrease, and Concavity”
“Limits and Continuity”: Continuity
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Section 5.3 Integration: “Integration by Substitution”
“Before Calculus”: New Functions from Old.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. The Tangent Line Problem.
4.7 - L’Hopital’s Rule; Indeterminate Forms (page ) b L’Hopital’s Rule was developed by and named after a French mathematician - Guillame Francois.
“Limits and Continuity”:.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Section 6.1 Area Between Two Curves. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
“Before Calculus” Functions.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. 2.5 CONTINUITY Intuitively,
Section 6.5 Area of a Surface of Revolution. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright.
Section 4.5: Indeterminate Forms and L’Hospital’s Rule Practice HW from Stewart Textbook (not to hand in) p. 303 # 5-39 odd.
Chapter 5 Graphing and Optimization Section 3 L’Hopital’s Rule.
L’Hopital’s Rule Section 8.1a.
L’Hopital (Lo-pee-tal) was a French mathematician who wrote the first calculus textbook Remember back in the limits unit when we evaluated a limit and.
Section 5.6 Integration: “The Fundamental Theorem of Calculus”
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Section 9.4 Infinite Series: “Convergence Tests”.
“Limits and Continuity”: Limits (An Intuitive Approach)
Section 9.7 Infinite Series: “Maclaurin and Taylor Polynomials”
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 5 Review.
 Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
 Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. Chapter Integration.
Section 8.2 Separation of Variables.  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights.
Section 5.2 Integration: “The Indefinite Integral”
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved (p. 443) First Area.
Section 9.6 Infinite Series: “Alternating Series; Absolute and Conditional Convergence”
Topics in Differentiation: “Derivative of Logarithmic Functions”
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS 122 Chapter 5 Review.
Calculus, 8/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved. Chapter Integration.
Applied Calculus, 3/E by Deborah Hughes-Hallet Copyright 2006 by John Wiley & Sons. All rights reserved. Section 2.2 The Derivative Function.
LESSON 64 L’HOPITAL’S RULE HL MATH - CALCULUS
Topics in Differentiation: “Implicit Differentiation”
Section 4.6 The Derivative in Graphing and Applications: “Rectilinear Motion”
Topics in Differentiation: “Derivatives of Exponential Functions”
“Before Calculus”: Inverse Functions; Inverse Trigonometric Functions.
“Limits and Continuity”: Limits at Infinity; End Behavior of a Function.
Section 9.3 Infinite Series. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
 Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Major theorems, figures,
Calculus, 9/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. MCS121 Calculus I Section.
Topics in Differentiation: “Related Rates”. All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright ©
Section 1.6 “Limits and Continuity”:
Integration: “Evaluating Definite Integrals by Substitution”
Slope Fields; Euler’s Method
The Derivative: “Introduction to Techniques of Differentiation”
“Limits and Continuity”: Computing Limits
The Derivative: “Derivatives of Trigonometric Functions”
Some of the material in these slides is from Calculus 9/E by
The Derivative: “The Chain Rule”
Presentation transcript:

Topics in Differentiation: “L’Hopital’s Rule; Indeterminate Forms”

All graphics are attributed to:  Calculus,10/E by Howard Anton, Irl Bivens, and Stephen Davis Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved.

Indeterminate Forms  In this sections, we will discuss a general method for using derivatives to find limits.  This method will allow us to find limits that we were previously only able to find by graphing (like the squeezing theorem).  Many computers use this method (internally) when calculating limits.

0/0 Type Indeterminate Form  Guillaume Francois Antoine de L’Hopital ( ) solved a difficult problem about cycloids when he was 15 years old and later published the first ever textbook on differential calculus which is where L’Hopital’s rule first appeared.  There is more biographical information about L’Hopital on the bottom of page 221.  There is a proof of his rule on page 220.

0/0 Type Indeterminate Form: L’Hopital’s Rule

Warning and Steps  ** Please notice that the numerator and denominator are differentiated individually. (you take their derivatives separately) It is NOT the same as (f/g)’, so you are NOT using the quotient rule.**

Example Two Ways

Another example  There are five more similar examples on pages if you are interested.  For the example below, I cannot use algebraic methods from Chapter 2 and I do not know how to graph it without a calculator.  This is when L’Hopital’s Rule is especially useful.

Make sure you do step 1!

Another version of L’Hopital’s Rule  This version is used to find the limit of ratios in which the numerator and denominator both have infinite limits.

Example this version of L’Hopital’s Rule  Similar steps are required as the original version of L’Hopital’s Rule. 1. Verify that numerator and denominator have infinite limits. 2. Derivative of numerator and denominator SEPARATELY. 3. Find the new limit.

Repeated applications of L’Hopital’s Rule Example  Sometimes you will get an indeterminate form again after applying L’Hopital’s Rule the first time and it will be necessary to do it again.

Other indeterminate forms  There are several other types of indeterminate forms that you will see on pages 224 & 225.  We will focus mostly on 0/0 type, but you should know a little bit about the others.

One Idea to Consider

Family Picture 2013