Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder.

Slides:



Advertisements
Similar presentations
Multivariate Twin Analysis
Advertisements

Bivariate analysis HGEN619 class 2007.
Fitting Bivariate Models October 21, 2014 Elizabeth Prom-Wormley & Hermine Maes
Elizabeth Prom-Wormley & Hermine Maes
The use of Cholesky decomposition in multivariate models of sex-limited genetic and environmental effects Michael C. Neale Virginia Institute for Psychiatric.
ACE estimates under different sample sizes Benjamin Neale Michael Neale Boulder 2006.
Multivariate Mx Exercise D Posthuma Files: \\danielle\Multivariate.
Factor analysis Caroline van Baal March 3 rd 2004, Boulder.
(Re)introduction to OpenMx Sarah Medland. Starting at the beginning  Opening R Gui – double click Unix/Terminal – type R  Closing R Gui – click on the.
Path Analysis Danielle Dick Boulder Path Analysis Allows us to represent linear models for the relationships between variables in diagrammatic form.
Multivariate Analysis Nick Martin, Hermine Maes TC21 March 2008 HGEN619 10/20/03.
Introduction to Multivariate Analysis Frühling Rijsdijk & Shaun Purcell Twin Workshop 2004.
Multivariate Genetic Analysis: Introduction(II) Frühling Rijsdijk & Shaun Purcell Wednesday March 6, 2002.
Bivariate Model: traits A and B measured in twins cbca.
Extended sibships Danielle Posthuma Kate Morley Files: \\danielle\ExtSibs.
Longitudinal Modeling Nathan, Lindon & Mike LongitudinalTwinAnalysis_MatrixRawCon.R GenEpiHelperFunctions.R jepq.txt.
Multivariate Analysis Hermine Maes TC19 March 2006 HGEN619 10/20/03.
David M. Evans Sarah E. Medland Developmental Models in Genetic Research Wellcome Trust Centre for Human Genetics Oxford United Kingdom Twin Workshop Boulder.
Univariate Analysis Hermine Maes TC19 March 2006.
Genetic Growth Curve Models Practica Boulder, March 2008 Irene Rebollo & Gitta Lubke & Mike Neale VU Amsterdam NL & Notre Dame, US & VCU, US.
Gene x Environment Interactions Brad Verhulst (With lots of help from slides written by Hermine and Liz) September 30, 2014.
Path Analysis Frühling Rijsdijk SGDP Centre Institute of Psychiatry King’s College London, UK.
Mx Practical TC18, 2005 Dorret Boomsma, Nick Martin, Hermine H. Maes.
Introduction to Multivariate Genetic Analysis Kate Morley and Frühling Rijsdijk 21st Twin and Family Methodology Workshop, March 2008.
Path Analysis Frühling Rijsdijk. Biometrical Genetic Theory Aims of session:  Derivation of Predicted Var/Cov matrices Using: (1)Path Tracing Rules (2)Covariance.
Raw data analysis S. Purcell & M. C. Neale Twin Workshop, IBG Colorado, March 2002.
Karri Silventoinen University of Helsinki Osaka University.
Standard genetic simplex models in the classical twin design with phenotype to E transmission Conor Dolan & Janneke de Kort Biological Psychology, VU 1.
Karri Silventoinen University of Helsinki Osaka University.
Continuously moderated effects of A,C, and E in the twin design Conor V Dolan & Sanja Franić (BioPsy VU) Boulder Twin Workshop March 4, 2014 Based on PPTs.
 Go to Faculty/marleen/Boulder2012/Moderating_cov  Copy all files to your own directory  Go to Faculty/sanja/Boulder2012/Moderating_covariances _IQ_SES.
Institute of Psychiatry King’s College London, UK
Extending Simplex model to model Ph  E transmission JANNEKE m. de kort & C.V. DolAn Contact:
Cholesky decomposition May 27th 2015 Helsinki, Finland E. Vuoksimaa.
Univariate modeling Sarah Medland. Starting at the beginning… Data preparation – The algebra style used in Mx expects 1 line per case/family – (Almost)
Practical SCRIPT: F:\meike\2010\Multi_prac\MultivariateTwinAnalysis_MatrixRaw.r DATA: DHBQ_bs.dat.
F:\sarah\fri_MV. Multivariate Linkage and Association Sarah Medland and Manuel Ferreira -with heavy borrowing from Kate Morley and Frühling Rijsdijk.
Longitudinal Modeling Nathan Gillespie & Dorret Boomsma \\nathan\2008\Longitudinal neuro_f_chol.mx neuro_f_simplex.mx jepq6.dat.
Gene-Environment Interaction & Correlation Danielle Dick & Danielle Posthuma Leuven 2008.
Threshold Liability Models (Ordinal Data Analysis) Frühling Rijsdijk MRC SGDP Centre, Institute of Psychiatry, King’s College London Boulder Twin Workshop.
Univariate Analysis Hermine Maes TC21 March 2008.
Longitudinal Modeling Nathan & Lindon Template_Developmental_Twin_Continuous_Matrix.R Template_Developmental_Twin_Ordinal_Matrix.R jepq.txt GenEpiHelperFunctions.R.
Mx modeling of methylation data: twin correlations [means, SD, correlation] ACE / ADE latent factor model regression [sex and age] genetic association.
Mx Practical TC20, 2007 Hermine H. Maes Nick Martin, Dorret Boomsma.
David M. Evans Multivariate QTL Linkage Analysis Queensland Institute of Medical Research Brisbane Australia Twin Workshop Boulder 2003.
Introduction to Multivariate Genetic Analysis Danielle Posthuma & Meike Bartels.
Developmental Models/ Longitudinal Data Analysis Danielle Dick & Nathan Gillespie Boulder, March 2006.
March 7, 2012M. de Moor, Twin Workshop Boulder1 Copy files Go to Faculty\marleen\Boulder2012\Multivariate Copy all files to your own directory Go to Faculty\kees\Boulder2012\Multivariate.
Multivariate Genetic Analysis (Introduction) Frühling Rijsdijk Wednesday March 8, 2006.
Categorical Data HGEN
Extended Pedigrees HGEN619 class 2007.
Genetic simplex model: practical
Multivariate Analysis
Bivariate analysis HGEN619 class 2006.
Univariate Twin Analysis
Introduction to Multivariate Genetic Analysis
Fitting Univariate Models to Continuous and Categorical Data
Re-introduction to openMx
Univariate modeling Sarah Medland.
GxE and GxG interactions
Longitudinal Modeling
Sarah Medland faculty/sarah/2018/Tuesday
Bivariate Genetic Analysis Practical
Simplex Model Practical
Multivariate Genetic Analysis
Multivariate Genetic Analysis: Introduction
Multivariate Mx Example D Posthuma & M Bartels
Presentation transcript:

Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 20121M. de Moor, Twin Workshop Boulder

March 7, 2012M. de Moor, Twin Workshop Boulder2 Outline – Lecture Bivariate Cholesky Decomposition – Practical Bivariate analysis of IQ and attention problems LUNCH – Lecture Multivariate Cholesky Decomposition – PCA versus Cholesky – Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems

March 7, 2012M. de Moor, Twin Workshop Boulder3 Outline – Lecture Bivariate Cholesky Decomposition – Practical Bivariate analysis of IQ and attention problems LUNCH – Lecture Multivariate Cholesky Decomposition – PCA versus Cholesky – Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems

Bivariate Cholesky March 7, 2012M. de Moor, Twin Workshop Boulder4 Twin 1 Phenotype 1 A1A1 A2A2 E1E1 E2E2 a 11 a 21 a 22 e 11 e 21 e Twin 1 Phenotype 2 C1C1 C2C2 c 11 c 21 c P1 P2 a1a2 P1 P2 c1c2 P1 P2 e1e2

Adding more phenotypes… Twin 1 Phenotype 1 A1A1 A2A2 E1E1 E2E2 a 11 a 21 a 22 e 11 e 21 e Twin 1 Phenotype 2 C1C1 C2C2 c 11 c 21 c Twin 1 Phenotype 3 E3E3 e 33 e 31 e 32 C3C3 c 33 1 A3A3 a 33 c 32 a 31 c 31 a P1 P2 a1a2 P1 P2 c1c2 P1 P2 e1e2 a3 c3 e3 P3

Adding more phenotypes… Twin 1 Phenotype 1 A1A1 A2A2 E1E1 E2E2 a 11 a 21 a 22 e 11 e 21 e Twin 1 Phenotype 2 C1C1 C2C2 c 11 c 21 c Twin 1 Phenotype 3 E3E3 e 33 e 31 e 32 C3C3 c 33 1 A3A3 a 33 c 32 a 31 c 31 a Twin 1 Phenotype 4 C4C4 A4A4 1 c 44 a 44 E4E4 e 44 1 e 41 e 42 e 43 P1 P2 a1a2 P1 P2 c1c2 P1 P2 e1e2 a3 c3 e3 P3 a4 c4 e4 P4

Trivariate Cholesky Twin 1 Phenotype 1 A1A1 A2A2 E1E1 E2E2 a 11 a 21 a 22 e 11 e 21 e Twin 1 Phenotype 2 C1C1 C2C2 c 11 c 21 c / Twin 1 Phenotype 3 E3E3 e 33 e 31 e 32 C3C3 c 33 1 A3A3 a 33 c 32 a 31 c 31 a Twin 2 Phenotype 1 A1A1 A2A2 E1E1 E2E2 a 11 a 21 a 22 e 11 e 21 e Twin 2 Phenotype 2 C1C1 C2C2 c 11 c 21 c Twin 2 Phenotype 3 E3E3 e 33 e 31 e 32 C3C3 c 33 1 A3A3 a 33 c 32 a 31 c 31 a /0.5 1

Vars <- c(’varx', ’vary’, ‘varz’) nv <- 3 # or, even more efficiently: nv <- length(Vars) … # Matrices a, c, and e to store a, c, and e path coefficients mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name="a" ), mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name="c" ), mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name="e" ), What to change in OpenMx script?

Standardized solution – 3 pheno’s March 7, 2012M. de Moor, Twin Workshop Boulder9 Twin 1 Phenotype 1 A1A1 A2A2 E1E1 E2E2 a 11 a 22 e 11 e Twin 1 Phenotype 2 C1C1 C2C2 c 11 c / Twin 1 Phenotype 3 E3E3 e 33 C3C3 c 33 1 A3A3 a Twin 2 Phenotype 1 A1A1 A2A2 E1E1 E2E2 a 11 a 22 e 11 e Twin 2 Phenotype 2 C1C1 C2C2 c 11 c Twin 2 Phenotype 3 E3E3 e 33 C3C3 c 33 1 A3A3 a /0.5 1

Genetic correlations March 7, 2012M. de Moor, Twin Workshop Boulder10 corA <- mxAlgebra(name ="rA", expression = solve(sqrt(I*A))%*%A%*%solve(sqrt(I*A))) 2x2 3x3

The order of variables Order of variables does not matter for the solution! – Fit is identical, just different parameterization – Standardized solutions are identical in terms of fit and parameter estimates! But interpretation of A/C/E variance components is different! – Where A2 refers to those genetic factors that are not shared with phenotype 1 Sometimes there is natural ordering: – Temporal ordering (IQ at 2 time points) – Neuroticism and MDD symptoms March 7, 2012M. de Moor, Twin Workshop Boulder11

Cholesky decomposition is not a model… No constraints on covariance matrices Just reparameterization… …But very useful to explore the data! Observed statistics = Number of parameters March 7, 2012M. de Moor, Twin Workshop Boulder12

Cholesky decomposition is not a model… Bivariate constrained saturated model: – 2 variances, 1 within-twin covariance MZ=DZ – 2 within-trait cross-twin covariances MZ – 1 cross-trait cross-twin covariance MZ – 2 within-trait cross-twin covariances DZ – 1 cross-trait cross-twin covariance DZ Bivariate Cholesky decomposition – a11, a21, a22 – c11, c21, c22 – e11, e21, e22 March 7, 2012M. de Moor, Twin Workshop Boulder13 9 observed statistics 9 parameters

Comparison with other models March 7, 2012M. de Moor, Twin Workshop Boulder14 Cholesky decomposition models Principal component analysis  Sanja, now Confirmatory factor models  Dorret, Sanja, Michel, this morning Genetic factor models  Hermine, after coffee break

Further reading Three classic papers: Martin NG, Eaves LJ: The genetical analysis of covariance structure. Heredity 38:79-95, 1977 Carey, G. Inference About Genetic Correlations, BG, 1988 Loehlin, J. The Cholesky Approach: A Cautionary Note, BG, 1996 Carey, G. Cholesky Problems, BG, 2005 SEE ALSO: March 7, 2012M. de Moor, Twin Workshop Boulder15

March 7, 2012M. de Moor, Twin Workshop Boulder16 Outline – Lecture Bivariate Cholesky Decomposition – Practical Bivariate analysis of IQ and attention problems LUNCH – Lecture Multivariate Cholesky Decomposition – PCA versus Cholesky – Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems

Practical Trivariate ACE Cholesky model 126 MZ and 126 DZ twin pairs from Netherlands Twin Register Age 12 Educational achievement (EA) FSIQ Attention Problems (AP) [mother-report] March 7, 2012M. de Moor, Twin Workshop Boulder17

Practical Script CholeskyTrivariate.R Dataset Cholesky.dat March 7, 2012M. de Moor, Twin Workshop Boulder18

Exercise Add Educational Achievement as the first of the 3 variables Run the saturated model, ACE model and AE model Question: Can we drop C? March 7, 2012M. de Moor, Twin Workshop Boulder19 -2LLdfchi2∆dfP-value ACE model --- AE model

Exercise Run 4 submodels – Submodel 1: drop rg between EA and AP – Submodel 2: drop rg between FSIQ and AP – Submodel 3: drop re between EA and AP – Submodel 4: drop re between FSIQ and AP Compare fit of each submodel with full AE model March 7, 2012M. de Moor, Twin Workshop Boulder20

Exercise Questions: – Can we drop rg between EA and AP? – Can we drop rg between FSIQ and AP? – Can we drop re between EA and AP? – Can we drop re between FSIQ and AP? March 7, 2012M. de Moor, Twin Workshop Boulder21 -2LLdfchi2∆dfP-value AE model--- No a31 No a32 No e31 No e32

March 7, 2012M. de Moor, Twin Workshop Boulder22

Extra exercise Replace FSIQ by VIQ and PIQ, and run a fourvariate Cholesky model. Questions: – Is AP differentially related to VIQ and PIQ, phenotypically and genotypically? March 7, 2012M. de Moor, Twin Workshop Boulder23