HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS.

Slides:



Advertisements
Similar presentations
HiRadMat Beryllium thermal shock test Kavin Ammigan PASI 2 nd Annual Meeting RAL, UK April 2013 Contributors: P. Hurh, B. Hartsell.
Advertisements

ME 240: Introduction to Engineering Materials Chapter 8. Failure 8.1 CHAPTER 8.
Normal Strain and Stress
Manufacturing Technology
Alessandro Bertarelli – EN-MME
Engineering materials lecture #14
Member of the Helmholtz Association Takeshi Hirai | Institute of Energy Research | Association EURATOM – FZJ Cracking of a tungsten material exposed to.
ME 388 – Applied Instrumentation Laboratory Fatigue Lab.
LS-Dyna and ANSYS Calculations of Shocks in Solids Goran Skoro University of Sheffield.
R.Valbuena NBI March 2002 CNGS Decay Pipe Entrance Window Structural and Thermal Analysis A.Benechet, P.Cupial, R.Valbuena CERN-EST-ME.
Design of an Aerospace Component
FE calculations for the bolted helium vessel May 6th 2015
TED Thermomechanical Analyses Esposito Raffaele EN-STI-TCD.
ENEN TCP.B6L7.B1: ANALYTICAL AND NUMERICAL EVALUATION OF UNEXPECTED HEATING LHC Collimation Working Group M. Garlasché A. Bertarelli, F. Carra,
Vacuum, Surfaces & Coatings Group Technology Department Glassy Carbon Tests at HiRadMat 14 March 2014 C. Garion2 Outline: Introduction Context: Transparent.
Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced under loading. Statics analyses.
Status of R&D and Beam Plans for Low-Impedance Collimators F. Carra 1,2 A. Bertarelli, R. Bruce, A. Dallocchio, M. Garlasché, L. Gentini, P. Gradassi,
CHAPTER 6: MECHANICAL PROPERTIES
Mechanical Properties
STRENGTH OF MATERIALS John Parkinson ©.
Poisson’s Ratio For a slender bar subjected to axial loading:
Chapter Five Vibration Analysis.
1 ME383 Modern Manufacturing Practices Lecture Note #3 Stress-Strain & Yield Criteria Dr. Y.B. Guo Mechanical Engineering The University of Alabama.
Stress and Strain – Axial Loading
PSB dump: proposal of a new design EN – STI technical meeting on Booster dumps Friday 11 May 2012 BE Auditorium Prevessin Alba SARRIÓ MARTÍNEZ.
F. Regis, LINAC4 – LBS & LBE LINES DUMP DESIGN.
Felix Dietrich | LCWS 2014 | | Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel.
CERN-SLAC meeting June, The LHC Collimator Project LHC Collimators for Phase 1 CERN-SLAC meeting – June, Palo Alto, Ca Alessandro Bertarelli.
STATUS OF H0/H- DUMPS M. Delonca – LIU meeting 29/11/2012 Thanks to: C. Maglioni, A. Patapenka, C. Pasquino, A. Perez, N. Mariani.
GIGATRACKER SUPPORTING PLATE COOLING SYSTEM SIMULATION 1Vittore Carassiti - INFN FECERN, 11/12/2007.
UPDATES OF IRRADIATION TESTS AT GSI ON LHC COLLIMATOR MATERIALS E. Quaranta, F. Carra, P. Hermes CollUSM August 1 st 2014 BE BEAM DEPARTMENT Many thanks.
Engineering Department ENEN Collimator Robustness Studies with BCMS Beams Collimation Working Group F. Carra, A. Bertarelli, R. Bruce, P. Gradassi,
AdColMat: Status of the Working Group and Recent Advancements Working Group on Advanced Materials for Collimators 4 th Meeting - 21/7/2014 A. Dallocchio.
Russian Research Center” Kurchatov Institute” Shock wave propagation near 450 GeV and 7 TeV proton beams in LHC collimator materials Alexander Ryazanov.
Issues Raised by the Design of the LHC Beam Dump Entrance Window Ray Veness / CERN With thanks to B.Goddard and A.Presland.
High Intensity Beam Test of Beryllium for Target and Beam Window Applications Presented by: Brian Hartsell Contributors: Kavin Ammigan, Patrick Hurh NBI.
EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement EuCARD2 ColMat HDED.
Alessandro BertarelliTS department Seminar, 3 rd May 2006 EDMS Alessandro Dallocchio 1,2 Alessandro Bertarelli 1 1 TS department – Mechanical and Material.
TPSG4 validation at HighRadMat #6 Cedric Baud, B. Balhan, Jan Borburgh, Brennan Goddard, Wim Weterings.
HRMT14 – Post Irradiation F. Carra on behalf of the HRMT14 team 189 th Collimation Working Group – 20 April, 2015.
EGM 5653 Advanced Mechanics of Materials
A. Bertarelli – A. DallocchioWorkshop on Materials for Collimators and Beam absorbers, 4 th Sept 2007 LHC Collimators (Phase II): What is an ideal material.
Problems H.P. : 신재혁.
HRM28-TCDI Updates October 28 th, 2015 Fausto Lorenzo Maciariello, on behalf of the TCD Team.
Materials Science Chapter 8 Deformation and Fracture.
HiRadMat Experiments: Simulation, Design and Planning F. Carra 1,2 A. Bertarelli, E. Berthomé, M. Borg, R. Bruce, F. Cerutti, A. Dallocchio, M. Garlasché,
V. Raginel, D. Kleiven, D. Wollmann CERN TE-MPE 2HiRadMat Technical Board - 30 March 2016.
Chiara Di Paolo EN-STI-TCD Material Choice for the Vacuum Window at the Exit of BTM.
New nTOF target: Design Issues
on behalf of the Phase II Collimation Design team
Numerical Modeling for Hydraulic Fracture Prediction on Fused Silica Surrogate Cylindrical Samples Varun Gupta.
HRM 28 Update 12/05/2016 F.L. Maciariello, F.-X. Nuiry, M. Butcher, K. Karagiannis, V. Kain, L. Mircea, M. Calviani, O. Aberle, S. Burger, T. Lefevre,
Status of HRMT23 Activities F. Carra, E. Berthomé, G
Proposal TDIS-TZM WP14 TDIS jaw validation testing
Poisson’s Ratio For a slender bar subjected to axial loading:
Stress and Strain – Axial Loading
Ignacio Aviles Santillana
Beam Window Studies for Superbeams
Thermo-mechanical simulations jaws + tank
TCTW Collimator Design F. Carra1,2 A. Bertarelli, M. Garlasche, L
Federico Carra – EN-MME
2th EuCard Col/Mat WP Meeting
Valloni A. Mereghetti, E. Quaranta, H. Rafique, J. Molson, R. Bruce, S. Redaelli Comparison between different composite material implementations in Merlin.
Poisson’s Ratio For a slender bar subjected to axial loading:
Ch. 2: Fundamental of Structure
External Review of LHC Collimation Project Oliver Aberle 1th July 2004
Mechanical Properties: 1
Poisson’s Ratio For a slender bar subjected to axial loading:
Simple Stresses & Strain
Copyright ©2014 Pearson Education, All Rights Reserved
Presentation transcript:

HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS

Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/20142

Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/20143

HRMT23 test bench components Test bench support – Static deformation F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/2014  4 tank supports (load = 1000 kg)  3 sferax for the vertical movement  Does the plate flexion induce stress on the sferax?  NO: Maximum horizontal displacement: 7 μm (inside manufacturing tolerances) 4

Optical windows: atmospheric pressure 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  External pressure: 1.5 bar  Fixed supports on the contour  Maximum total displacement: 1.7 μm  Maximum stress intensity: 4.8 MPa  When using fused silica: maximum admissible stress ~ 55MPa HRMT23 test bench components 5

Optical windows: expected dose 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado HRMT23 test bench components  HRMT14  2E14 protons  HRMT23  6E14 protons  Dose on glasses HRMT23 = 3x(HRMT14) = 2 kGy x 3 = 6 kGy  Factor of 5 introduced due to different geometry, uncertainties in the number of pulses, etc.  dose expected on a glass during HRMT23 = 5 x 6 = 30 kGy Glass specification:  High residual transparency at doses > 30 kGy  Flexural resistance > 15 MPa 6

Vacuum tank 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado HRMT23 test bench components 7  Material: 304L v.p.  Load: 1.5bar  Maximum stress: 84 MPa  Buckling Factor: 90 !

Beryllium window 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado HRMT23 test bench components 8  Different beam size and window orientation considered  In all cases a plastic deformation is observed  Ultimate strain ~ 0.05  T melt = 1278ºC BeamMaximum eqv Strain (m/m)Max Temperature (ºC) 4.9e13p; σ=0.3mm; angle: 0º e13p; σ=0.3mm; angle: 0º e13p; σ=0.25mm; angle: 0º e13p; σ=0.25mm; angle: 45º  Maximum beam sigma allowed = 0.3 mm!

Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/20149

TCSG and TCSx impact Simulation model and parameters F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ Energy450 GeV Particle typeprotons Beam size (sigma, both planes)1 mm Beam divergencenone Impact parameter5 sigma Beam directionParallel to jaw axis Number of protons6.40E+13 Number of bunches288 Impact duration7.2E-6 s TCSx Beam TCSG Beam

TCSG and TCSx impact Temperature at the end of the deposition F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ TCSx T max =1720˚C  T melt_MoGr > 2500 ˚C T max =740˚C TCSG  T melt_Gl ~ 1090 ˚C T max,Gl =200˚C

TCSG and TCSx impact Shockwave propagation F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201412

TCSG and TCSx impact Maximum absolute values to be acquired on the active surface F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ TCSGTCSx Speed (m/s)6~ 10 Strain (%) Stress (MPa)116265

TCSG and TCSx impact Maximum stresses F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/   x,max = 56 MPa;  x,min = -125 MPa   y,max = 265 MPa;  y,min = -100 MPa   z,max = 38 MPa;  z,min = -146 MPa Reference: MG3110P   Rz,flex ~ 85 MPa;  Rx,flex = ?   Rz,comp,  Rx,comp = ? TCSx  x  max =56MPa  x  min =-125MPa   x,max = 18.5 MPa;  x,min = -67 MPa   y,max = 116.6MPa;  y,min = MPa   z,max = 56.5 MPa;  z,min = MPa Reference: CFC (AC150k)   Rz,flex ~ 120 MPa;  Rx,flex = 10MPa   Rz,comp = 60MPa;  Rx,comp = ? TCSG

TCSG and TCSx impact Maximum strains F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/   x,max = 0.43%;  x,min = -0.83%   y,max = 0.47%;  y,min = -0.1%   z,max = 0.05%;  z,min = -0.11% Reference: MG3110P   Rz,flex ~ 0.35% MPa;  Rx,flex = ?   Rz,comp,  Rx,comp = ? TCSx  x  max =0.43%  x  min =-0.83%   x,max = 0.35%;  x,min = -1.32%   y,max = 0.13%;  y,min = -0.10%   z,max = 0.05%;  z,min = -0.02% Reference: CFC (AC150k)   Rz,flex = ?;  Rx,flex = ?   Rz,comp,  Rx,comp = ? TCSG  x  max =0.35%  x  min =-1.32%

TCSG and TCSx impact TCSG plastic deformation F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ ε pl = 0.18% ε pl = 0.12%

TCSG and TCSx impact Maximum absolute values to be acquired on the active surface F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ TCSGTCSx Speed (m/s)6~ 10 Strain (%) Stress (MPa)116265

TCSP Impact 3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado18

Outline F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado  Calculations of HRMT23 test bench components  TCSG and TCSx jaws: physical quantities in HRMT23  Lessons from HRMT14: CuCD vs. MoGr  Conclusions 3/7/201419

Aim Copper-Diamond 144 bunches Molybdenum-Graphite (3 grades) 144 bunches MoGRCF-3 Implicit approach Evaluate thermal response of samples at impact during HMRT14 Link to simulations folder F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201420

‘Energy Deposition Results in: HRMT14 Samples…’; AdColMat #3, A. Manousos, V. Vlachoudis time 250ns 72 bunches, 25ns bunch spacing MoGRCF3 CuCD Beam Characteristics F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201421

Material properties: CuCD CuCD Properties ρ (g/cm3)5.4 c (J/kg-K) k (W/m-K)490 CTE (K -1 )7.8e-6 E (GPa)220 v (-)0.22 ‘Development of Novel, Advanced…’; Doct. Thesis, N.Mariani Link to Material properties research Plastic behaviour at high T: Case 1 (driven by Diamond): Brittle, E=const.=220GPa Case 2 (driven by Cu): Plasticity starting from tensile limit T AMB T (°C) c E=220GPa E TAN =500MPa 70 ε (-) σ (MPa) i.e. Studying the upper and lower boundaries F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201422

Material properties: MoGR x,yz ρ (g/cm3)3.65 c (J/kg-K) k (W/m-K) CTE (K-1)3e-61e-5 E (GPa)5512 v (-)0.3 ‘Development of Novel, Advanced…’; Doct. Thesis, N.Mariani Link to Material properties research K x,y (W/m-K) K z (W/m-K) T (°C) T (°C) c (J/kg-K) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201423

MoGRCF-3

Results: Thermal T sample_MAX /T MELT = 778/2505=0.3 [°C] [μs] T MELT T sample beam F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201425

Results: Structural σ 1st_principal [MPa] Energy deposition (s) beam F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado (Just..) below values for rupture (96MPa) 3/7/201426

Results: Structural σ TRESCA [MPa] (s) Energy deposition Volume for σ TRESCA > σ uts (=96MPa) beam F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201427

CuCD

T MAX /T MELT =1.1 T sample [°C] [μs] Results: Thermal F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201429

~15mm ~R1 Symmetry surface Molten volume beam Inside sample = not detectable on images Results: Thermal F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201430

Case 1 : material behaviour mostly driven by Diamond  Brittle, E=const.=220GPa * * Lever rule would give tangent modulus =173GPa (i.e. Behaviour highly similar to that of a ideally elastic CuCD with E=T=220GPa) Results: Structural Red means failure... As sample is still standing, this means different material behaviour than ‘brittle with 70MPa tensile strength’ at higher T, dε F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201431

Results: Structural Case 2 impact, material properties driven by Cu Subjective hypothesis: plasticity starting from tensile limit T AMB (i.e. at 70MPa) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201432

Results: Structural Case 2 impact, material properties driven by Cu Subjective hypothesis: plasticity starting from tensile limit T AMB (i.e. at 70MPa) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201433

Optical change on CuCD surface ~R2 Explainable with surface phenomena due to ‘thermal treatment’ Blue surface - typical color for oxydation due to: -High surface temperature (promotes oxydation) -Presence of O particles due to bad vacuum (>1e-3mbar) Cleaned surface due to: -At T>400C, oxide reduction via diffusion into bulk ‘Copper oxide reduction through vacuum annealing’ Lee et al., Elsevier 2002 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201434

~R2 Optical change on CuCD surface ~R C CONCLUSION: Visual change is not hint of structural phenomena (deformations) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201435

Conclusions 3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado36  Engineering calculations on the components under design for the new test bench don’t highlight any issue  Thermo-mechanical dynamic calculations were performed on CFC and MoGr jaws to evaluate amplitude and frequency of the phenomena to acquire  The calculated values are relatively low and well inside the measurement range of LDV and strain gauges: could we have the opposite problem, too low signals for the noise level? –> see Michael’s presentation  The same calculation done for TCSx MoGr should be repeated for CuCD  Dynamic simulations can also be used to predicted failure or survival of the jaws: ultimate strain and stress is going to be measured at the mechanical lab  Glidcop housing and cooling pipes show plastic strain around %!  Marco analysed HRMT14 CuCD and MoGr, explaining the reasons of MoGr survival and CuCD change of surface  According simulations, CuCD melted locally and internally failed: a detailed post-irradiation analysis is needed to confirm that

Next steps 3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado37  Contact Schott to evaluate a suitable rad-hard glass  Perform FLUKA and ANSYS/AUTODYN simulations on the full TCSx collimator, with both MoGr and CuCD jaws  The last static step of the simulation will be completed in order to evaluate the residual strain on the housing  Evaluate ultimate strength and strain of MoGr, CFC and CuCD  Improve material models, taking into account pseudo-plasticity of graphite- based materials  …

Thanks for your attention!

Backup slides

~R2 TCSG Physical quantities ~R3.5 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ Data: \\cern.ch\dfs\Users\f\fcarra\Public\Copy of TCSG-0 1ms-xyz-exeyez-uvw.xlsx\\cern.ch\dfs\Users\f\fcarra\Public\Copy of TCSG-0 1ms-xyz-exeyez-uvw.xlsx

3/7/2014F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado41 Both configuration meet the requirements but after further analyses the 45°one was chosen. Minimum principal stress for both configurations

~R2 TCSx Physical quantities ~R3.5 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ Data: \\cern.ch\dfs\Users\f\fcarra\Public\TCSx_PhysicalQuantities.xlsx\\cern.ch\dfs\Users\f\fcarra\Public\TCSx_PhysicalQuantities.xlsx

~R2 TCSx material properties ~R3.5 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/ Tempera ture (C) Young's Modulus X direction (Pa) Young's Modulus Y direction (Pa) Young's Modulus Z direction (Pa) Poisson' s Ratio XY Poisson' s Ratio YZ Poisson' s Ratio XZ Shear Modulus XY (Pa) Shear Modulus YZ (Pa)Shear Modulus XZ (Pa) 1.2E+105.5E E+092E+108E+09

Results: Structural Radial displacement [mm] beam 1e-2 1.3e-2 0 (s) F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201444

F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201445

F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201446

Conclusions MoGR: temperatures below melting maxima stresses ( σ 1 below rupture) inside specimen  degradation not visible from pics CuCD: Temperatures well over melting (surface color benchmark) Structural: need of Post-mortem/ high T properties analysis Next Steps MoGR: comparison with MG4110 & further upgrades Fluka analysis needed structural measurements ongoing CuCD: F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado3/7/201447