Galaxy Collisions Top left is an image of the Cartwheel galaxy. The ring of young stars was likely created as a smaller galaxy passed through the disk.

Slides:



Advertisements
Similar presentations
Galaxies. The Hubble Tuning-Fork Diagram This is the traditional scheme for classifying galaxies:
Advertisements

ASTR-1020 Stellar Astronomy Day 26. Galaxy Classes.
Objectives: 1.Explain current theories of how galaxies form, and change over time. 2.Know the characteristics of the milky way galaxy. 3.Compare and contrast.
Caty Pilachowski IU Astronomy Mini-University 2014.
February 9, 11:00 am. The unusually bright centers found in some galaxies are called 1.active galactic nuclei. 2.starbursts. 3.halos. 4.supermassive.
Copyright © 2010 Pearson Education, Inc. Chapter 16 Galaxies and Dark Matter.
The Milky Way Galaxy part 2
1 Announcements Reading for next class: Chapters 22.6, 23 Cosmos Assignment 4, Due Wednesday, April 21, Angel Quiz Monday, April 26 Quiz 3 & Review, chapters.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Spiral Galaxies. Elliptical Galaxies Irregular Galaxies.
Galaxies What is a galaxy? How many stars are there in an average galaxy? About how many galaxies are there in the universe? What is the name of our galaxy?
Galactic Evolution PHYS390 Astrophysics Professor Lee Carkner Lecture 21.
ASTR100 (Spring 2008) Introduction to Astronomy Galaxy Evolution & AGN Prof. D.C. Richardson Sections
Galaxies and the Foundation of Modern Cosmology II.
March 21, 2006Astronomy Chapter 27 The Evolution and Distribution of Galaxies What happens to galaxies over billions of years? How did galaxies form?
Susan CartwrightOur Evolving Universe1 Galaxy evolution n Why do galaxies come in such a wide variety of shapes and sizes? n How are they formed? n How.
Galaxies What is a galaxy? How many stars are there in an average galaxy? About how many galaxies are there in the universe? What is the name of our galaxy?
Goal: To know the different types of galaxies and to understand their differences and similarities. Objectives: 1) To learn about Spirals 2) To learn about.
Virtually all galaxies show a flat rotation curve.
Chapter 20: Galaxies So far we have talked about “small” things like stars, nebulae and star clusters. Now it’s time to get big!
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
15.3 Galaxy Evolution Our Goals for Learning How do we observe the life histories of galaxies? How did galaxies form? Why do galaxies differ?
Galaxies Chapter 16. Galaxies Star systems like our Milky Way Contain a few thousand to tens of billions of stars. Large variety of shapes and sizes.
Galaxies Chapter 13:. Galaxies Contain a few thousand to tens of billions of stars, Large variety of shapes and sizes Star systems like our Milky Way.
Galaxies Live in Clusters Hickson Fornax. Coma Virgo.
 Galaxies with extremely violent energy release in their nuclei  Active Galactic Nuclei (AGN)  Up to many thousand times more luminous than the entire.
This is the Local Group of galaxies, about 45 galaxies within about 1 Mpc of the Milky Way. Most are dwarf-elliptical or iregular. A distance of one million.
Galaxies.
Our goals for learning How did Hubble prove galaxies lie beyond our galaxy? How do we observe the life histories of galaxies? How did galaxies form? Why.
Chapter 24 Galaxies. Beyond the Milky Way are billions of other galaxies Some galaxies are spiral like the Milky Way while others are egg-shaped / elliptical.
Galaxies.
1- Where is our sun in the H-R diagram. 2- What color is our sun
Galaxies and More Galaxies! It is now believed that there are over 100 billion galaxies, each with an average of 100 billion stars… stars altogether!
Earth Science 25.3 The Universe The Universe. Earth Science 25.3 The Universe  On a clear and moonless night, away from city lights, you can see a marvelous.
1 Galaxies The Andromeda Galaxy - nearest galaxy similar to our own. Only 2 million light years away! Galaxies are clouds of millions to hundreds of billions.
Chapter 25 Galaxies and Dark Matter Dark Matter in the Universe We use the rotation speeds of galaxies to measure their mass:
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 25.
Galaxies (And a bit about distances). This image shows galaxy M 100 in which the Hubble Space Telescope detected Cepheid variables.
Galaxies. Galaxies2 Introduction Beyond the Milky Way, the visible Universe contains more than ten billion galaxies Some galaxies are spiral like the.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
GalaxiesGalaxies Learning Outcome (Student will…): compare characteristics & classification of various galaxies.
January 2nd 2013 Objective Warm-Up
1 The Milky Way Galaxy We live on the quiet outskirts of a galaxy of approximately 100 Billion stars. This galaxy, the Milky Way, is roughly disk-shaped.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
By Katy O’Donohue. Black Holes Black Holes are a region of space from which nothing can escape, including light. Light is made up of massless particles.
Chapter 12 Space Exploration. Section 12.1 page 428 Explaining the Early Universe GALAXY – collection of stars, planets, gas and dust held together by.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
Active Galaxies and Supermassive Black Holes Chapter 17.
Quasars and Other Active Galaxies
Copyright © 2010 Pearson Education, Inc. Chapter 16 Galaxies and Dark Matter Lecture Outline.
Chapter 12 Space Exploration. Section 12.1 page 428 Explaining the Early Universe GALAXY – collection of stars, planets, gas and dust held together by.
A Long Time Ago in a Galaxy Far, Far Away…. The Milky Way Galaxy: Home Sweet Home!! Our home Galaxy is called the MILKY WAY (like the candy bar ) Our.
© 2010 Pearson Education, Inc. Galaxies. © 2010 Pearson Education, Inc. Hubble Deep Field Our deepest images of the universe show a great variety of galaxies,
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
Chapter 25 Galaxies and Dark Matter. 25.1Dark Matter in the Universe 25.2Galaxy Collisions 25.3Galaxy Formation and Evolution 25.4Black Holes in Galaxies.
Galaxies. The Hubble Tuning-Fork Diagram This is the traditional scheme for classifying galaxies:
GALAXIES & BEYOND. What is a galaxy? A galaxy is a very large group of stars held together by gravity. Size: 100,000 ly+ Contain Billions of stars separated.
Galactic Evolution AST 112.
Galaxies.
How fast would a galaxy 2,000 megaparsecs away be moving with respect to us, according to Hubble’s Law? Hint: H0 = 70 km/s/Mpc 1,400 km/s 14,000 km/s 140,000.
What is a Galaxy ? Solar System Distance from Earth to Sun
Chapter 21 Galaxy Evolution
Galaxies.
Galaxies.
Galaxies.
THE UNIVERSE Essential Questions
Galaxies.
Presentation transcript:

Galaxy Collisions Top left is an image of the Cartwheel galaxy. The ring of young stars was likely created as a smaller galaxy passed through the disk of the larger one. Bottom left is an image of two interacting galaxies, which will eventually merge into one (a billion years from now). No human will ever witness an entire galaxy collision as the process takes many millions of years.

Galaxy Collisions Computers can simulate a galaxy collision in a matter of hours. Galaxies in clusters collide quite often. In small groups, the galaxies move slowly and tend to stick together and merge. In large groups, the galaxies move more quickly and pass through each other without merging. In a few billion years, Andromeda (our nearest large neighbor) will collide with the Milky Way (it’s moving 120 km/s towards us).

Galaxy Collisions While a collision will wreak havoc on the large scale structure of a galaxy, the individual stars remain unaffected. The stars in a galaxy are so small compared to the distances in between them, that the stars in two colliding galaxies generally never come into actual contact. The stars may be pulled / pushed to new locations due to the gravitational interactions, but they do not (in general) run into each other.

Galaxy Formation and Evolution We know of no simple evolutionary connections among the various categories in Hubble’s classification scheme. The theory of galaxy formation is still very much in its infancy. Complicating the picture are the numerous collisions and mergers a galaxy can experience during its lifetime.

Galaxy Interactions Left alone, a galaxy will evolve as predicted by stellar evolution. However, few galaxies remain in isolation their entire lifetimes. Interactions can rearrange a galaxy’s stars, as well as trigger a sudden burst of new star formation. See above for examples of starburst galaxies, where the interaction induced star formation is extremely intense. Encounters may also “divert fuel” to a central black hole, powering violent activity in some galactic nuclei.

Galaxy Interactions Computer simulations have shown that dark matter halos surrounding galaxies are crucial to galaxy interactions. Galactic cannibalism - when a less massive galaxy interacts with a more massive galaxy, the more massive galaxy takes matter from the less massive one. Galaxy interactions between similarly (but not exactly the same) sized disk galaxies can produce the appearance of spiral arms. The entire event takes several hundred million years.

Making the Hubble Sequence While collisions are random events, and not a true evolutionary process, they can form one type of galaxy from another. If two comparable disk galaxies collide, the resulting galaxy (after a merger) will be an elliptical. If a large galaxy merges with a smaller one, the large galaxy maintains its original form. Spiral galaxies are more common in less dense regions of the universe - their disks are easily destroyed by collisions and mergers, which are much more common in the centers of galaxy clusters (regions of high density).

Black Holes and Active Galaxies Since quasars are much more common at greater distances from us, they must have been more prevalent in the past than they are today. Quasars represent an early stage of galaxy evolution denoted by large activity, after which galaxies calm down.

The Quasar Epoch Where did the supermassive black holes which form quasars come from? We’re not yet sure. Since quasars “eat” about a thousand solar masses of material per year, they could not maintain their luminosities for very long. Quasars likely run out of fuel after a few million years. So, most quasars were relatively brief events that occurred a long time in the past. To make a quasar, we need a black hole and enough fuel to power it. Fuel (gas and stars) was in abundance in the early universe. But, how do you get a supermassive black hole? One possibility - smaller (more normal sized) black holes merged in galaxy centers. Another likely event - when galaxies collide and merge, so do their central black holes. Earliest known quasars formed 13 billion years ago. The height of the quasar epoch occurred 11 billion years ago.

The Quasar Epoch In 2002, Chandra (X-ray observatory) discovered a binary black hole. The two massive black holes are falling in toward each other, and are predicted to merge in about 400 million years. See top left. This is the first direct evidence that such events do actually happen. Since distant galaxies are much fainter than their quasar centers, it’s difficult to discern any galactic structure in quasar images. See top right for Hubble images of a quasar and its parent galaxy (first time a host galaxy was actually seen). Active galaxies tend to be in clusters. Quasar activity appears to be intimately linked to interactions and collisions in galaxy clusters.

Active and Normal Galaxies Rapid decline in number of quasars marks the end of the quasar epoch - roughly 10 billion years ago. Today, the number of quasars has dropped to virtually zero (recall the closest one to us is hundreds of megaparsecs away). The black holes don’t vanish - so galaxies should still have central black holes after the quasars have run out of fuel. The black holes become active again when given new sources of fuel - this is what happens for active galaxies. Matter gets near the black hole, and a previously normal galaxy becomes active once again.

Active Galaxy Formation The largest black holes tend to be found in the most massive galaxies. The most massive black holes power the brightest active galactic nuclei. These galaxies formed from major mergers of large galaxies, which would result in ellipticals. So radio galaxies should be associated with ellipticals. Smaller mergers would have formed spirals and the less active Seyferts.