On the spin orientation 1. Qualitative rules for predicting preferred spin orientations? 2. Spin orientations of Sr 3 NiIrO 6, Sr 2 IrO 4, Ba 2 NaOsO 6.

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering Luuk Ament In collaboration with Jeroen van den Brink and Fiona Forte.
Physics “Advanced Electronic Structure” Lecture 7.2. Calculations of Magnetic Interactions Contents: 1.Non-collinear SDFT. 2.Applications to Magnetic.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Kris T. Delaney1, Maxim Mostovoy2, Nicola A. Spaldin3
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Kitaoka Lab. M1 Yusuke Yanai Wei-Qiang Chen et al., EPL, 98 (2012)
Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d1, d4, d6 and d9 ions Lecture 2: Interpreting electronic.
Lecture 22 Electronic structure of Coordination Compounds 1) Crystal Field Theory Considers only electrostatic interactions between the ligands and the.
V. Pomjakushin I.M.Frank Laboratory of Neutron Physics, JINR, Dubna In collaboration with: A. Balagurov Frank Laboratory of Neutron Physics, JINR, Dubna.
Density functional study of magnetic solids Spin exchange interactions and magnetic properties M.-H. Whangbo Deparetment of Chemistry North Carolina State.
The Electronic Spectra of Coordination Compounds.
                  Electrical transport and magnetic interactions in 3d and 5d transition metal oxides Kazimierz Conder Laboratory for Developments and.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
Stephen Hill, Saiti Datta and Sanhita Ghosh, NHMFL and Florida State University In collaboration with: Enrique del Barco, U. Central Florida; Fernando.
IRIDATES Bill Flaherty Materials 286K, UCSB Dec. 8 th, 2014.
Lecture 28 Electronic Spectra of Coordination Compounds MLx (x = 4,6) 1) Terms of a free d2 metal atom The total number of microstates for an isolated.
K R I S T. D E L A N E Y ( M R L, U C S B ) | S U P E R E X C H A N G E D R I V E N - M A G N E T O E L E C T R I C I T Y | A P S M A R C H M E E T ING.
DYNAMICAL PROPERTIES OF THE ANISOTROPIC TRIANGULAR QUANTUM
Some features of Single Layered Manganites La 1-x Sr 1+x MnO 4 G. Allodi, C. Baumann, B. Büchner, D. Cattani, R. De Renzi, P. Reutler.
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Magnetism III: Magnetic Ordering
Lecture 19: Magnetic properties and the Nephelauxetic effect sample south thermometer Gouy Tube electromagnet balance north connection to balance left:
CHAPTER 5: CRYSTAL FIELD THEORY
Chap 24 Part 2 Color and Magnetism  The color of the complex is the sum of the light not absorbed (reflected) by the complex.Color Color of a complex.
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Magnetism and Magnetic Materials
Blaubeuren 2006 Relaxation mechanisms in exchange coupled spin systems – I Line broadening and the Kubo-Tomito approach Joachim Deisenhofer Université.
Seillac, 31 May Spin-Orbital Entanglement and Violation of the Kanamori-Goodenough Rules Andrzej M. Oleś Max-Planck-Institut für Festkörperforschung,
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Geometric Magnetic Frustration in Double Perovskite Oxides A 2 BB’O 6 Jeremy P. Carlo Department of Physics Villanova University June 2014 Oxides for Energy.
Slide 2/26 Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d 1, d 4, d 6 and d 9 ions Lecture 2: Interpreting.
Single-ion and exchange anisotropy effects in small single-molecule magnets* Richard A. Klemm University of Central Florida, Orlando, FL USA and Dmitri.
Andreas Scholl, 1 Marco Liberati, 2 Hendrik Ohldag, 3 Frithjof Nolting, 4 Joachim Stöhr 3 1 Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
ISSP TASSP workshop Jun 19, 2008 Multiferroic behavior in spin-chirality- and exchange-striction-driven compounds Jung Hoon Han (SungKyunKwan U, Korea)
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Chapter 10 Atomic Structure and Atomic Spectra. Spectra of complex atoms Energy levels not solely given by energies of orbitals Electrons interact and.
Co-ordination Chemistry Theories of Bonding in Co-ordination compound. 1. Valence Bond Theory 2. Crystal Field Theory 3. Molecular Orbital Theory.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
Vector Chiral States in Low- dimensional Quantum Spin Systems Raoul Dillenschneider Department of Physics, University of Augsburg, Germany Jung Hoon Kim.
Self-Organizations in Frustrated Spinels Seung-Hun Lee National Institute of Standards and Technology.
Exchange splitting in electronic states of single atoms and magnetic coupling in single dimers and trimers on a surface Mats Persson (1), Hyo-June Lee.
Tami Pereg-Barnea McGill University CAP Congress, June 16, 2014.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Ligand field theory considers the effect of different ligand environments (ligand fields) on the energies of the d- orbitals. The energies of the d orbitals.
Magnetic Frustration at Triple-Axis  Magnetism, Neutron Scattering, Geometrical Frustration  ZnCr 2 O 4 : The Most Frustrated Magnet How are the fluctuating.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Electronically smectic-like phase in a nearly half-doped manganite J. A. Fernandez-Baca.
Structure & Magnetism of LaMn 1-x Ga x O 3 J. Farrell & G. A. Gehring Department of Physics and Astronomy University of Sheffield.
Vector spin chirality in classical & quantum spin systems
KIAS Emergent Materials 2006 Bond Polarization induced by Magnetic order Jung Hoon Han Sung Kyun Kwan U. Reference: cond-mat/0607 Collaboration Chenglong.
ARPES studies of unconventional
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
10/24/01PPHMF-IV1 Spinons, Solitons, and Breathers in Quasi-one-dimensional Magnets Frustrated Magnetism & Heavy Fermions Collin Broholm Johns Hopkins.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
March Meeting 2007 Spin-polarization coupling in multiferroic transition-metal oxides Shigeki Onoda (U. Tokyo) Chenglong Jia (KIAS) Jung Hoon Han (SKKU)
Theoretical description of electrons in single molecule magnets Ernest R Davidson Universities of Washington and North Carolina.
Crucial interactions in BaIrO 3 : Spin-orbit coupling and Coulomb correlation W.W. Ju ( 琚伟伟 ) and Z. Q. Yang*( 杨中芹 ) Abstract The electronic structures.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
Evolution of the orbital Peierls state with doping
Time dependent magnetization in CoxFe3-xO4 nanocrystals
PBE-GGA Calculations on Hydroxyl Substituted Mn12O12(COOH)16 (H2O)4
Ferromagnetism and antiferromagnetism ferromagnetism (FM)
Ⅱ HOMO-LUMO gap and dispersion of HOMO
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Last hour: Orbit magnetism
Spin-orbit coupling and coupled charge-spin-orbital state in iridates
Ab initio calculation of magnetic exchange parameters
Presentation transcript:

On the spin orientation 1. Qualitative rules for predicting preferred spin orientations? 2. Spin orientations of Sr 3 NiIrO 6, Sr 2 IrO 4, Ba 2 NaOsO 6 : Implications on the magnetism of J eff =1/2 ions M.-H. Whangbo Department of Chemistry North Carolina State University NC , USA E. E. Gordon:Chemistry, NCSU J. W. Kim, S.-W. Cheong: Physics, Rutgers University H. J. Xiang:Physics, Fudan University

Energy Mapping Analysis 3. Broken-Symmetry Spin States  E spin-H   E DFT 1. Model Hamiltonian: Parameters 2. DFT calculations  Qualitative prediction?

Spin orientation  spin-orbit coupling (SOC) Large SOC Topological insulators Rashba-Dresselhaus effects Valleytronics Spin-textured bands J eff =1/2 states Coupling between spin and orbital moments weak  L-S coupling strong  j-j coupling

Magnetic insulator of 5d oxides  Strong SOC + weak correlation PRB 75, (2007) Ba 2 NaOsO 6 : Os 7+ (5d 1, S = 1/2)  CW  -10 K FM below T C  7 K PRB 84, (2011) DFT+U DFT+SOC DFT+U+SOC Os 7+ (5d 1, S = 1/2) in Ba 2 NaOsO 6 No preferred spin orientation

Sr 2 IrO 4 : low-spin Ir 4+ (5d 5, S = 1/2)  (t 2g ) 5 Corner-sharing IrO 6  IrO 4 layer, Axially-elongated IrO 6 Magnetic insulator Strong SOC + weak correlation  split of J eff =1/2 PRL 101, (2008) Science 323, 1329 (2009) Excitation different orbital states

PRB 87, (R) (2013) Low-spin Ir 4+ (5d 5, S = 1/2) ion in Sr 2 IrO 4 Weakly anisotropic, preferred spin orientation:  Ir-O ax ESR study of Sr 2 IrO 4 Isotropic Heisenberg interactions between Ir 4+ spins PRB 89, (R) (2014)

Ni Ir c Sr 3 NiIrO 6 : low-spin Ir 4+ (5d 5, S = 1/2), high-spin Ni 2+ (3d 8, S = 1) Strongly anisotropic M-H hysteresis  FM? Ferrimagnetic? PRB 89, (R) (2014) PRL, under review  1/3  B /FU 

Ni 2+ and Ir 4+ spins both ||c nn AFM  Ferrimagnetic PRB 90, (2014) arXiv: [cond-mat.str-el]arXiv: Partially disordered AFM (PDA)  1/3  B /FU Low-spin Ir 4+ (5d 5, S = 1/2) in Sr 3 NiIrO 6 Strongly anisotropic

Weak single-ion isotropy: SOC from a trace orbital moment (x, y, z) for orbital, (x’, y’, z’) for spin Most important, between the HO and the LU states Dalton Trans. 42, 823 (2013)  = 0  : easy-axis anisotropy  = 90  : easy-plane anisotropy J. Comput. Chem. 29, 2187 (2008)

Spin-polarized d-states Selection rules for SOC 3z 2 -r 2 xy, x 2 -y 2 xz, yz |  L z |=2 |  L z |=1 |  L z |=0

High-spin Mn 3+ in TbMnO 3 & Ag 2 MnO 2 Axially-elongated MnO 6 octahedron (xy  ) 1 < (z 2  ) 1 < (x 2 -y 2  ) 0 ||z, easy-axis anisotropy PRL 101, (2008) PRB 81, (2010)

Concluding remarks The preferred spin orientations of magnetic ions, predicted by uniaxial magnetism, or weak single-ion anisotropy.