Genome Rearrangements Anne Bergeron, Comparative Genomics Laboratory Université du Québec à Montréal Belle marquise, vos beaux yeux me font mourir d'amour.

Slides:



Advertisements
Similar presentations
A Simpler 1.5-Approximation Algorithm for Sorting by Transpositions Tzvika Hartman Weizmann Institute.
Advertisements

Sorting by reversals Bogdan Pasaniuc Dept. of Computer Science & Engineering.
Genome Rearrangements in Evolution and Cancer Guillaume Bourque Genome Institute of Singapore HKU-Pasteur Research Centre - Hong Kong August 28 th, 2009.
Greedy Algorithms CS 466 Saurabh Sinha. A greedy approach to the motif finding problem Given t sequences of length n each, to find a profile matrix of.
Greedy Algorithms CS 6030 by Savitha Parur Venkitachalam.
Gene an d genome duplication Nadia El-Mabrouk Université de Montréal Canada.
Bioinformatics Module Supplementary Lecture 1 Cell biology.
Bioinformatics Chromosome rearrangements Chromosome and genome comparison versus gene comparison Permutations and breakpoint graphs Transforming Men into.
Current Approaches to Whole Genome Phylogenetic Analysis Hongli Li.
Greedy Algorithms And Genome Rearrangements
Introduction to Bioinformatics Algorithms Greedy Algorithms And Genome Rearrangements.
CHAPTER 15 Microbial Genomics Genomic Cloning Techniques Vectors for Genomic Cloning and Sequencing MS2, RNA virus nt sequenced in 1976 X17, ssDNA.
Of Mice and Men Learning from genome reversal findings Genome Rearrangements in Mammalian Evolution: Lessons From Human and Mouse Genomes and Transforming.
Genome Rearrangements. Basic Biology: DNA Genetic information is stored in deoxyribonucleic acid (DNA) molecules. A single DNA molecule is a sequence.
Genome Rearrangements CSCI : Computational Genomics Debra Goldberg
Genomic Rearrangements CS 374 – Algorithms in Biology Fall 2006 Nandhini N S.
1 Michal Ozery-Flato and Ron Shamir 2 The Genomic Sorting Problem HOW?
Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals Journal of the ACM, vol. 46, No. 1, Jan 1999, pp
5. Lecture WS 2003/04Bioinformatics III1 Genome Rearrangements Compare to other areas in bioinformatics we still know very little about the rearrangement.
Genome Rearrangement SORTING BY REVERSALS Ankur Jain Hoda Mokhtar CS290I – SPRING 2003.
1 Genome Rearrangements João Meidanis São Paulo, Brazil December, 2004.
7-1 Chapter 7 Genome Rearrangement. 7-2 Background In the late 1980‘s Jeffrey Palmer and colleagues discovered a remarkable and novel pattern of evolutionary.
TGCAAACTCAAACTCTTTTGTTGTTCTTACTGTATCATTGCCCAGAATAT TCTGCCTGTCTTTAGAGGCTAATACATTGATTAGTGAATTCCAATGGGCA GAATCGTGATGCATTAAAGAGATGCTAATATTTTCACTGCTCCTCAATTT.
Combinatorial and Statistical Approaches in Gene Rearrangement Analysis Jijun Tang Computer Science and Engineering University of South Carolina
Genome Rearrangement By Ghada Badr Part II. 2  Genomes can be modeled by each gene can be assigned a unique number and is exactly found once in the genome.
A Simplified View of DCJ-Indel Distance Phillip Compeau A Simplified View of DCJ- Indel Distance Phillip Compeau University of California-San Diego Department.
Genome Rearrangements Tseng Chiu Ting Sept. 24, 2004.
1 A Simpler 1.5- Approximation Algorithm for Sorting by Transpositions Combinatorial Pattern Matching (CPM) 2003 Authors: T. Hartman & R. Shamir Speaker:
1 Transforming Men into Mice: Are there Fragile Regions in Human Genome?
Binary Encoding and Gene Rearrangement Analysis Jijun Tang Tianjin University University of South Carolina (803)
1 Gene Geography Dan Graur Department of Biology and Biochemistry 3c.
16. Lecture WS 2004/05Bioinformatics III1 V16 – genome rearrangement Important information – contained in the order in which genes occur on the genomes.
Greedy Algorithms And Genome Rearrangements An Introduction to Bioinformatics Algorithms (Jones and Pevzner)
Genome Rearrangements [1] Ch Types of Rearrangements Reversal Translocation
Greedy Algorithms And Genome Rearrangements
Sorting by Cuts, Joins and Whole Chromosome Duplications
Reconstructing Genomic Architectures of Tumor Genomes Pavel Pevzner and Ben Raphael Department of Computer Science & Engineering University of California,
Greedy Algorithms CS 498 SS Saurabh Sinha. A greedy approach to the motif finding problem Given t sequences of length n each, to find a profile matrix.
Gene: A sequence of nucleotides coding for protein Gene Prediction Problem: Determine the beginning and end positions of genes in a genome Gene Prediction:
7. Lecture WS 2003/04Bioinformatics III1 Genome-scale evolution: multiple genome rearrangement, phylogeny based on whole genome sequence Material of this.
Mutations.
Genome Rearrangement By Ghada Badr Part I.
Genome Rearrangements. Turnip vs Cabbage: Look and Taste Different Although cabbages and turnips share a recent common ancestor, they look and taste different.
Genome Rearrangements. Turnip vs Cabbage: Look and Taste Different Although cabbages and turnips share a recent common ancestor, they look and taste different.
1 Genome Rearrangements (Lecture for CS498-CXZ Algorithms in Bioinformatics) Dec. 6, 2005 ChengXiang Zhai Department of Computer Science University of.
How many genes are there?
15. Lecture WS 2004/05Bioinformatics III1 V15: genome rearrangement – current status * Genome comparison mouse – human: syntenic regions * Breakpoint analysis.
TRNA Tree A A A A A A The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. Wei.
Lecture 4: Genome Rearrangements. End Sequence Profiling (ESP) C. Collins and S. Volik (UCSF Cancer Center) 1)Pieces of tumor genome: clones ( kb).
Lecture 2: Genome Rearrangements. Outline Cancer Sequencing Transforming Cabbage into Turnip Genome Rearrangements Sorting By Reversals Pancake Flipping.
CSCI2950-C Lecture 9 Cancer Genomics
CSCI2950-C Genomes, Networks, and Cancer
Original Synteny Vincent Ferretti, Joseph H. Nadeau, David Sankoff, 1996 Presented by: Suzy Sun.
Conservation of Combinatorial Structures in Evolution Scenarios
Genome Rearrangement and Duplication Distance
Mutations Chapter 12-4.
Genome Rearrangements
CSE 5290: Algorithms for Bioinformatics Fall 2009
Greedy (Approximation) Algorithms and Genome Rearrangements
Lecture 3: Genome Rearrangements and Duplications
Mattew Mazowita, Lani Haque, and David Sankoff
Greedy Algorithms And Genome Rearrangements
A Unifying View of Genome Rearrangement
CSCI2950-C Lecture 6 Genome Rearrangements and Duplications
Double Cut and Join with Insertions and Deletions
Gene Mutations.
Academic Biology Notes
JAKUB KOVÁĆ, ROBERT WARREN, MARÍLIA D.V. BRAGA and JENS STOYE
Alignment of Wt1 genomic regions reveals a highly conserved element upstream of zebrafish wt1a. Alignment of Wt1 genomic regions reveals a highly conserved.
Rearrangement Phylogeny of Genomes in Contig form
Presentation transcript:

Genome Rearrangements Anne Bergeron, Comparative Genomics Laboratory Université du Québec à Montréal Belle marquise, vos beaux yeux me font mourir d'amour. Vos yeux beaux d'amour me font, belle marquise, mourir. Me font vos beaux yeux mourir, belle marquise, d'amour.

1. General introduction to genome rearrangements Examples of rearranged genomes 2. Measures of distance Rearrangement operations The Hannenhalli-Pevzner distance equation 3. A unifying view of genome rearrangements The Double-Cut-and-Join operation The adjacency graph and the distance equation

1. General introduction to genome rearrangements Examples of rearranged genomes 2. Measures of distance Rearrangement operations The Hannenhalli-Pevzner distance equation 3. A unifying view of genome rearrangements The Double-Cut-and-Join operation The adjacency graph and the distance equation

Example of rearranged genomes : Mitochondrial Genomes Bombyx mori Homo sapiens Mitochondria are small, oval shaped organelles surrounded by two highly specialized membranes. Animal mitochondrial genomes are normally circular, ~16 kB in length, and encode: 13 proteins 22 tRNAs and 2 rRNAs.

RWLFSTNHKDIGTLYLLFGAWAGVLGTALSLLIRAELGQPGNLLGNDHIYNVIVTAHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNM KWIYSTNHKDIGTLYFIFGIWSGMIGTSLSLLIRAELGNPGSLIGDDQIYNTIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNM :*::***********::** *:*::**:**********:**.*:*:*:***.*******:**********************:************* SFWLLPPSLLLLLASAMVEAGAGTGWTVYPPLAGNYSHPGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMTQYQTPLFVWSVLITAVLLLLSLP SFWLLPPSLMLLISSSIVENGAGTGWTVYPPLSSNIAHSGSSVDLAIFSLHLAGISSIMGAINFITTMINMRLNNMSFDQLPLFVWAVGITAFLLLLSLP *********:**::*::** ************:.* :*.*:****:********:***:********:***: *: * *****:* ***.******* VLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGMDVD VLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGCLGMIYAMLAIGLLGFIVWAHHMFTVGMDID ***..************:***************************************:: *****.** :**::**::**:****************:* TRAYFTSATMIIAIPTGVKVFSWLATLHGSNMKWSAAVLWALGFIFLFTVGGLTGIVLANSSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFIHWFPLF TRAYFTSATMIIAVPTGIKIFSWLATMHGTQINYNPNILWSLGFVFLFTVGGLTGVILANSSIDITLHDTYYVVAHFHYVLSMGAVFAIIGGFINWYPLF *************:***:*:******:**:::::.. :**:***:**********::*****:**.***********************:****:*:*** SGYTLDQTYAKIHFTIMFIGVNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNILSSVGSFISLTAVMLMIFMIWEAFASKRKVLMVEEPSMNLE TGLSLNSYMLKIQFFTMFIGVNMTFFPQHFLGLAGMPRRYSDYPDSYISWNMISSLGSYISLLSVMMMLIIIWESMINQRINLFSLNLPSSIE :* :*:. **:* ******:**********:***********:* :**::**:**:*** :**:*:::***::.:* *: :..:* Here is an alignment of the cytochrome c oxidase I of, respectively, Homo sapiens and Bombyx mori. RWLFSTNHKDIGTLYLLFGAWAGVLGTALSLLIRAELGQPGNLLGNDHIYNVIVTAHAFVMIFFMVMPIMIGGFGNWLVPLMIGAPDMAFPRMNNM KWIYSTNHKDIGTLYFIFGIWSGMIGTSLSLLIRAELGNPGSLIGDDQIYNTIVTAHAFIMIFFMVMPIMIGGFGNWLVPLMLGAPDMAFPRMNNM :X::XXXXXXXXXXX::XX X:X::XX:XXXXXXXXXX:XX.X:X:X:XXX.XXXXXXX:XXXXXXXXXXXXXXXXXXXXXX:XXXXXXXXXXXXX SFWLLPPSLLLLLASAMVEAGAGTGWTVYPPLAGNYSHPGASVDLTIFSLHLAGVSSILGAINFITTIINMKPPAMTQYQTPLFVWSVLITAVLLLLSLP SFWLLPPSLMLLISSSIVENGAGTGWTVYPPLSSNIAHSGSSVDLAIFSLHLAGISSIMGAINFITTMINMRLNNMSFDQLPLFVWAVGITAFLLLLSLP XXXXXXXXX:XX::X::XX XXXXXXXXXXXX:.X :X.X:XXXX:XXXXXXXX:XXX:XXXXXXXX:XXX: X: X XXXXX:X XXX.XXXXXXX VLAAGITMLLTDRNLNTTFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIVTYYSGKKEPFGYMGMVWAMMSIGFLGFIVWAHHMFTVGMDVD VLAGAITMLLTDRNLNTSFFDPAGGGDPILYQHLFWFFGHPEVYILILPGFGMISHIISQESGKKETFGCLGMIYAMLAIGLLGFIVWAHHMFTVGMDID XXX..XXXXXXXXXXXX:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:: XXXXX.XX :XX::XX::XX:XXXXXXXXXXXXXXXX:X TRAYFTSATMIIAIPTGVKVFSWLATLHGSNMKWSAAVLWALGFIFLFTVGGLTGIVLANSSLDIVLHDTYYVVAHFHYVLSMGAVFAIMGGFIHWFPLF TRAYFTSATMIIAVPTGIKIFSWLATMHGTQINYNPNILWSLGFVFLFTVGGLTGVILANSSIDITLHDTYYVVAHFHYVLSMGAVFAIIGGFINWYPLF XXXXXXXXXXXXX:XXX:X:XXXXXX:XX:::::.. :XX:XXX:XXXXXXXXXX::XXXXX:XX.XXXXXXXXXXXXXXXXXXXXXXX:XXXX:X:XXX SGYTLDQTYAKIHFTIMFIGVNLTFFPQHFLGLSGMPRRYSDYPDAYTTWNILSSVGSFISLTAVMLMIFMIWEAFASKRKVLMVEEPSMNLE TGLSLNSYMLKIQFFTMFIGVNMTFFPQHFLGLAGMPRRYSDYPDSYISWNMISSLGSYISLLSVMMMLIIIWESMINQRINLFSLNLPSSIE :X :X:. XX:X XXXXXX:XXXXXXXXXX:XXXXXXXXXXX:X :XX::XX:XX:XXX :XX:X:::XXX::.:X X: :..:X 73% identity over more than 500 amino acids. Example of rearranged genomes : Mitochondrial Genomes

A lowly worm Charles Darwin, But the order of the genes differs from species to species. The 37 genes of animal mitochondria are highly conserved. Example of rearranged genomes : Mitochondrial Genomes

COX1COX2ATP6ATP8COX3ND3ND2ND4LND4ND5CYTBRNSRNLND1 ND6 Homo sapiens mitochondrial genome (proteins and rRNAs) COX1COX2ATP6ATP8COX3ND3ND2ND6CYTB ND5ND4ND4LRNSRNLND1 Bombyx mori mitochondrial genome (proteins and rRNAs) ND4LND4ND5RNSRNLND1 ND6 ND5ND4ND4LRNSRNLND1 The invariant parts COX1 stands for the gene cytochrome c oxidase I. COX1 stands for the gene cytochrome c oxidase I. Example of rearranged genomes : Mitochondrial Genomes

COX1COX2ATP6ATP8COX3ND3ND2ND4LCYTB Homo sapiens mitochondrial genome (proteins and rRNAs) COX1COX2ATP6ATP8COX3ND3ND2CYTB ND4L ND4ND5RNSRNLND1 ND6 ND5ND4RNSRNLND1 Bombyx mori mitochondrial genome (proteins and rRNAs) The modified parts ND4 ND5 ND6 RNS RNL ND1 Example of rearranged genomes : Mitochondrial Genomes

Fruit Fly Mosquito Silkworm Locust Tick Centipede Example of rearranged genomes : Mitochondrial Genomes of 6 Arthropoda Identical ‘runs’ of genes have been grouped.

(Art work by Guillaume Bourque, scientific work by Guillaume Bourque, Pavel Pevzner and Glenn Tesler, 2004) Example of rearranged genomes : mammal X chromosomes Sixteen large synteny blocks are ordered differently in the X chromosomes of the human, mouse and rat. Blocks have similar gene content and order. Note that the estimated number of genes in the X chromosome is 2000.

(Art work by Guillaume Bourque, scientific work by Guillaume Bourque, Pavel Pevzner and Glenn Tesler, 2004) Example of rearranged genomes : mammal X chromosomes

Problem: Given two or more genomes, How do we measure their similarity and/or distance with respect to gene order and gene content? Sub-problem: How do we know that two genes or blocks are the "same" in two different species?

1. General introduction to genome rearrangements Examples of rearranged genomes 2. Measures of distance Rearrangement operations The Hannenhalli-Pevzner distance equation 3. A unifying view of genome rearrangements The Double-Cut-and-Join operation The adjacency graph and the distance equation

Rearrangement operations affect gene order and gene content. There are various types: Inversions Transpositions Reverse transpositions Translocations, fusions and fissions Duplications and losses Others... Rearrangement operations Any set of operations yields a distance between genomes, by counting the minimum number of operations needed to transform one genome into the other.

Rearrangement operations Inversions

Rearrangement operations Inversions

Rearrangement operations Inversions

Example: Mitochondrial Genomes of 6 Arthropoda Fruit Fly Mosquito Silkworm Locust Tick Centipede An inversion.

Rearrangement operations Transpositions

Rearrangement operations Transpositions

Rearrangement operations Transpositions

Example: Mitochondrial Genomes of 6 Arthropoda Fruit Fly Mosquito Silkworm Locust Tick Centipede A transposition

Rearrangement operations Reverse transpositions

Rearrangement operations Reverse transpositions

Rearrangement operations Reverse transpositions

Example: Mitochondrial Genomes of 6 Arthropoda Fruit Fly Mosquito Silkworm Locust Tick Centipede A reverse transposition

Rearrangement operations Translocations, fusions and fissions

Rearrangement operations Translocations, fusions and fissions

Rearrangement operations Translocations, fusions and fissions

Rearrangement operations Translocations, fusions and fissions

Rearrangement operations Translocations, fusions and fissions

Rearrangement operations Translocations, fusions and fissions

[Source: Linda Ashworth, LLNL] DOE Human Genome Program Report From 24 chromosomes To 21 chromosomes

1. General introduction to genome rearrangements Examples of rearranged genomes 2. Measures of distance Rearrangement operations The Hannenhalli-Pevzner distance equation 3. A unifying view of genome rearrangements The Double-Cut-and-Join operation The adjacency graph and the distance equation

The Hannenhalli-Pevzner distance equation In 1995, Hannenhalli and Pevzner found a formula to compute the minimum number of inversions, translocations, fusions or fissions necessary to transform a multichromosomal genome into another. Sketch of the approach: Cap the chromosomes Concatenate all the chromosomes Sort the resulting genome by inversions

1. General introduction to genome rearrangements Examples of rearranged genomes 2. Measures of distance Rearrangement operations The Hannenhalli-Pevzner distance equation 3. A unifying view of genome rearrangements The Double-Cut-and-Join operation The adjacency graph and the distance equation

Acts on up to 4 gene extremities:,,, Reminder The Double-Cut-and-Join operation Yancopoulos et al. 2005

Linear chromosomes Translocation The Double-Cut-and-Join operation Reminder

Fusion Fission Inversion Fission Fusion Linear and circular chromosomes The Double-Cut-and-Join operation Reminder

Circular chromosomes Fusion Fission Inversion Fission Fusion The Double-Cut-and-Join operation Reminder

1. General introduction to genome rearrangements Examples of rearranged genomes 2. Measures of distance Rearrangement operations The Hannenhalli-Pevzner distance equation 3. A unifying view of genome rearrangements The Double-Cut-and-Join operation The adjacency graph and the distance equation 4. Breakpoint reuse Breakpoint reuse estimates Minimizing breakpoint reuse

The adjacency graph and the distance equation Genome A Genome B Joint work with Julia Mixtacki and Jens Stoye

The adjacency graph and the distance equation Genome A Genome B Joint work with Julia Mixtacki and Jens Stoye

The adjacency graph and the distance equation Genome A Genome B Joint work with Julia Mixtacki and Jens Stoye

The adjacency graph and the distance equation Genome A Genome B Joint work with Julia Mixtacki and Jens Stoye

The adjacency graph and the distance equation Genome A Genome B Joint work with Julia Mixtacki and Jens Stoye

The adjacency graph and the distance equation Genome A Genome B Joint work with Julia Mixtacki and Jens Stoye

The adjacency graph and the distance equation Genome A Genome B C = number of cycles I = number of odd paths G = number of “genes” D = G - (C + I/2) D = 6 - (1 + 2/2) = 4 Joint work with Julia Mixtacki and Jens Stoye