INPC2007-TokyoLhuillier David - CEA Saclay - France1 Double Chooz Experiment and Applied Neutrino Physics CEA Saclay : M. Cribier, T. Lasserre, A. Letourneau,

Slides:



Advertisements
Similar presentations
Combined evaluation of PFNS for 235 U(n th,f), 239 Pu(n th,f), 233 U(n th,f) and 252 Cf(sf) (in progress) V.G. Pronyaev Institute of Physics.
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Pablo DEL AMO SANCHEZ Henri PESSARD 18/12/2012
EMERALD1: A Systematic Study of Cross Section Library Based Discrepancies in LWR Criticality Calculations Jaakko Leppänen Technical Research Centre of.
Results from Daya Bay Xin Qian On behalf of Daya Bay Collaboration Xin Qian, BNL1.
6/6/2003Jonathan Link, Columbia U. NuFact03 Future Measurement of sin 2 2  13 at Nuclear Reactors Jonathan Link Columbia University June 6, 2003 ′03.
Modeling of Photonuclear Reactions & Transmutation of Long-lived Nuclear Waste in High Photon Fluxes M.-L. GIACRI-MAUBORGNE, D. RIDIKAS, J.-C.
Probing Majorana Neutrinos in Rare Meson Decays Claudio Dib UTFSM I.S. & B.K. Fest, UTFSM, May 2010 G. Cvetic, C.D., S.K. Kang, C.S. Kim, PRD 82, ,
Nuclear Physics Selected Topics 5 –Fission and Fusion.
Multi-physics coupling Application on TRIGA reactor Student Romain Henry Supervisors: Prof. Dr. IZTOK TISELJ Dr. LUKA SNOJ PhD Topic presentation 27/03/2012.
Prediction of Reactor Neutrino Spectra David Lhuillier CEA Saclay - France.
March AAP09 - Brazil - M. Fallot et al. Collaborations Double Chooz, Nucifer and MURE Time evolution of reactor antineutrino energy spectrum and.
Reactor Antineutrino Anomaly
Determining Reactor Neutrino Flux
Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques.
SUBATECH : S. Cormon, M. Fallot, L. Giot, B. Guillon, J. Martino CEA/DAPNIA/SPhN : D. Lhuillier, A. Letourneau, T. Mueller CEA/DAPNIA/SPP : M. Cribier,
CEA Irfu – Service de Physique Nucléaire Searching for sterile neutrinos with reactor experiments Jonathan Gaffiot, Ph.D. CEA Saclay: IRFU – Service de.
M. Giorgini University of Bologna, Italy, and INFN Limits on Lorentz invariance violation in atmospheric neutrino oscillations using MACRO data From Colliders.
MA and LLFP Transmutation Performance Assessment in the MYRRHA eXperimental ADS P&T: 8th IEM, Las Vegas, Nevada, USA November 9-11, 2004 E. Malambu, W.
Pieter Mumm and Karsten Heeger January 10, 2012 Search for Sterile Neutrinos with Reactor Antineutrinos An Opportunity for NIST?
Antineutrino Monitoring of Reactors Theoretical Feasibility Studies Antineutrino Monitoring of Reactors Theoretical Feasibility Studies Michael Nieto,
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
NUCLEAR DATA REQUIREMENTS FOR DECAY HEAT CALCULATIONS DECAY DATA.
1 Low Neutron Energy Cross Sections of the Hafnium Isotopes G. Noguère, A. Courcelle, J.M. Palau, O. Litaize CEA/DEN Cadarache, France P. Siegler JRC/IRMM.
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Using Reactor Anti-Neutrinos to Measure sin 2 2θ 13 Jonathan Link Columbia University Fermilab Long Range Planning Committee, Neutrino Session November.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
KamLAND, a culmination of half century of reactor neutrino studies. Petr Vogel, Caltech.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
Efforts in Russia V. Sinev Kurchatov Institute. Plan of talk Rovno experiments at th On the determination of the reactor fuel isotopic content by.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
1 Iterative dynamically stabilized (IDS) method of data unfolding (*) (*arXiv: ) Bogdan MALAESCU CERN PHYSTAT 2011 Workshop on unfolding.
Reactor Antineutrinos & Non Proliferation : Nantes (SUBATECH) & SPhN CEA Saclay 1 Muriel Fallot AAP Workshop – 26 sept. 06 Experimental needs for a better.
Results for the Neutrino Mixing Angle  13 from RENO International School of Nuclear Physics, 35 th Course Neutrino Physics: Present and Future, Erice/Sicily,
Neutron production study with the thick lead target and uranium blanket irradiated by 1.5 GeV protons Filip Křížek, ÚJF AV ČR.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
Search for Sterile Neutrino Oscillations with MiniBooNE
19 March 2009Thomas Mueller - Workshop AAP09 1 Spectral modeling of reactor antineutrino Thomas Mueller – CEA Saclay Irfu/SPhN.
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
Lecture 18: Total Rate for Beta Decay (etc...) 6/11/2003
Lecture 174/11/ Analysis: (solutions will be posted on the web site under “homework”) basic recipe: about 40% of the marks for knowing the.
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
Characterization of reactor fuel burn-up from antineutrino spectral distortions E. Kemp, L.F. G. Gonzalez, T.J.C. Bezerra and B. Miguez for the ANGRA Collaboration.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
A monochromatic neutrino beam for  13 and  J. Bernabeu U. de Valencia and IFIC NO-VE III International Workshop on: "NEUTRINO OSCILLATIONS IN VENICE"
Non-equilibrium Antineutrino spectrum from a Nuclear reactor We consider the evolution of the reactor antineutrino energy spectrum during the periods of.
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
Nuclear energy Summary of period 1. Parts of the atom Mass (A.M.U)Charge Proton1+1 Neutron10 Electron1/1830 Add/subtract a proton: creates a different.
Neutrino physics: The future Gabriela Barenboim TAU04.
Results on  13 Neutrino Oscillations from Reactor Experiments Soo-Bong Kim (KNRC, Seoul National University) “INPC 2013, Firenze, June 2-7, 2013”
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
M-C simulation of reactor e flux;
Reactor Flux at Daya Bay
Reactor anti-neutrinos and neutrinos
SoLid: Recent Results and Future Prospects
Simulation for DayaBay Detectors
Cumulated beta spectrum measurements of fission products
M-C simulation of reactor e flux;
Recent re-Evaluation of Reactor n Flux
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Current Results from Reactor Neutrino Experiments
Nuclear Data for Reactor Fluxes
Performed experiments Nuclotron – set up ENERGY PLUS TRANSMUTATION
Davide Franco for the Borexino Collaboration Milano University & INFN
Presentation transcript:

INPC2007-TokyoLhuillier David - CEA Saclay - France1 Double Chooz Experiment and Applied Neutrino Physics CEA Saclay : M. Cribier, T. Lasserre, A. Letourneau, D. Lhuillier, T. Mueller SUBATECH-NANTES: S. Cormon, M. Fallot, L.Giot, B. Guillon, J. Martino, J.H. Xu  Search for  13 Simulation of e - and energy spectra Applied physics: power measurement, non-proliferation

INPC2007-TokyoLhuillier David - CEA Saclay - France2  PHASE 1 ( ) - Far detector only - sin 2 (2  13 )<0.06 (1,5 years,90% C.L.)  PHASE 2 (2011…) - Far + Near sites - sin 2 (2  13 )<0.025 (3 years,90% C.L.) 2 identical 8.3t targets flux Double Chooz Experiment 2 PWR-N4 2x4.27 GW th

INPC2007-TokyoLhuillier David - CEA Saclay - France3

INPC2007-TokyoLhuillier David - CEA Saclay - France4 Accurate Simulation of Reactor Antineutrino Spectra Determine normalization and shape for phase 1 (dominant error) Use near detector to validate studies of applied neutrino physics: - Power measurement - Non-proliferation

INPC2007-TokyoLhuillier David - CEA Saclay - France5 Principle of our Approach Evolution code: MURE fissile mat. + FY neutron flux Core geometry isotope abundances  spectra database for all isotopes  branch spectrum: BESTIOLE nuclear database exp. spectrum models Weighted  Total and e - energy spectra with complete error treatment

INPC2007-TokyoLhuillier David - CEA Saclay - France6 Evolution Code MURE MCNP Utility for Reactor Evolution Neutron flux automatically adjusted to total power parameter Evolution equations and time step sizes validated, propagation of fission yield error Account for neutron capture ( V. Kopeikin et al., Phys. Atom. Nucl. 67 (2004) 1963 ) Working on the geometry of a N4 reactor core

INPC2007-TokyoLhuillier David - CEA Saclay - France7 Simulation of Chooz Reactors 2 PWR - N4 2x4.27 GW th Control rods (Instrumentation, Poisons…) Zircalloy 205 Assemblies 264 rods Fuel Assembly (0.2x0.2x4.8m) Fuel rod (D: 0.8 cm ; h:4.8 m) Fuel UO 2 pellets (2.1, 2.6, 3.1 % enrichment) - Fuel: enriched Uranium - Moderator/Coolant: Light pressurized Water (155 Bar, 600K) CPU limited, working on suitable sym. and approx. Full power and burn up info from electricity company during data taking Core

INPC2007-TokyoLhuillier David - CEA Saclay - France8 Building Total e - and Spectra Collect all available exp. info on individual  branches Remaining short-lived, high Q , nuclei described by nuclear models. Propagate all errors and compute correlations for any combination of fissile materials and any irradiation time. Final cross-check with integral measurements. dN/dE =  n Y n (Z,A,t)  i BR n,i P(E,E 0 i,Z) Fission yields branching ratios for decay branch i with endpoint E 0 i shape Strategy Strategy: Reactor spectrum: Sum of “n” isotopes of “i”  branches

INPC2007-TokyoLhuillier David - CEA Saclay - France9 P(E,E 0 i,Z)  Coulomb corrections Phase space Spectral Shape factor Well controlled for allowed and forbidden unique transitions. S n (E) E 0 =E e +E  for each  branch info on all  branches  unambiguous conversion to spectrum spectrum:  spectrum: F(Z,E). pE(E 0 i -E) 2 Energy Spectrum

INPC2007-TokyoLhuillier David - CEA Saclay - France10 Integral Validation electron e 235 U 1.5 days Agreement within 1  up to 6 MeV 950 nuclei, ~10000  branches Validation of spectrum shape No absolute normalization yet

INPC2007-TokyoLhuillier David - CEA Saclay - France11 Error Bars Expect final error bar comparable to integral data:  BR,  E 0,  Shape included, working on fission yields error Computation of correlations on progress -->Significant gain in sensitivity to shape distortions because most errors induce large correlations (  P th,  Y,  BR,  E 0 ). Good control of low energy part [1.8-6] MeV Relevant for normalization of phase 1

INPC2007-TokyoLhuillier David - CEA Saclay - France12 Power Measurement Burn up effect: Project of miniature detector based on Double Chooz concept To be installed ~10m from reactor core Unique tool for cross-calibration of reactor cores !

INPC2007-TokyoLhuillier David - CEA Saclay - France13 Non Proliferation 235 U 239 Pu E/fission201.7 MeV210.0 MeV Mean energy 2.94 MeV2.84 MeV /fission > 1.8 MeV for interaction cm cm 2 For a fixed thermal power, the measured e fluxes from pure 235 U or 239 Pu would differ by 55%… but realistic scenario implies tiny effect.

INPC2007-TokyoLhuillier David - CEA Saclay - France14 Conclusion Promising preliminary results for normalization of Double Chooz phase 1. -Original approach with complete treatment of error bars and their correlations (expected to be large) Same simulation package is a key element of future applied physics: -Project of 2-3%power measurement with miniature detector -non-proliferation. Looks difficult, first goal is to determine detection threshold for removed Pu mass and point out critical unknown nuclei to increase sensitivity

INPC2007-TokyoLhuillier David - CEA Saclay - France15 Backup Slices

INPC2007-TokyoLhuillier David - CEA Saclay - France16 Double Chooz Concept P( e  e ) = 1-sin 2 (2  13 )sin 2 (  m 2 31 L/4E) Near detector Far detector Disappearance experiment Clean measurement of  13 flux : e /s Nuclear power station 2 cores: 4.27 GW th Near detector ~280 mFar detector 1050 m e e, ,  eV eV

INPC2007-TokyoLhuillier David - CEA Saclay - France17 Expected Oscillation Signal Far Spectrum Near Spectrum Far/Near ratio sin 2 (2  13 )=0.12  m 2 atm = eV 2 After 3 years Assuming:

INPC2007-TokyoLhuillier David - CEA Saclay - France18 Previous Studies Theoretical approach : Klapdor & Metzinger microscopic calc. of trans. matrix elements (PLB82 + PRL82), Vogel et al. for 238 U Integral  spectra measured by Schreckenbach et al. (at better than 2% until 8 MeV) & Hahn et 235 U, 239,241 Pu targets, (PLB218(1989)365) but conversion : global fit including 30 arbitrary contributions: global shape uncertainty from to FP contributions : measurements of Tengblad et al. (NPA503(1989)136) 111 don’t agree with the experimental integral spectra (important errors : 5% at 4MeV, 11% at 5MeV and 20% at 8MeV) Chooz and Bugey : energy spectrum and flux in agreement with Scheckenbach et al. + Vogel et al. for 238 U, 1.9 % error on reactor e flux

INPC2007-TokyoLhuillier David - CEA Saclay - France19 Exp. Spectra of Fission Products nuclei in perfect agreement with our database Remaining 63 replaced. Correct error estimate requires careful treatment of fit correlations 111 fission products measured by Tengblad’s et al at ISOLDE

INPC2007-TokyoLhuillier David - CEA Saclay - France20 Bestiole Data Base root and ascii formats 950 nuclei ~10000  branches 500  -n branches Interfaced to various sources of information tag all relevant info (forbiddenness, level of approx., …) BDB

INPC2007-TokyoLhuillier David - CEA Saclay - France21 Electron spectra Error Bars Requires spin and parity of nuclear levels No predictions for non-unique transitions Use envelop of illustrated shapes to determine error (extra info from exp. shape factors) Spectrum Shape Quote preliminary ±2.5% sys. error

INPC2007-TokyoLhuillier David - CEA Saclay - France22  Errors on all branches treated as independent….  Converges as Error Bars    BR From ENSDF nuclear database:

INPC2007-TokyoLhuillier David - CEA Saclay - France23 Treatment of Correlations  2 test of two independent data sets: Generalized  2 test with correlated errors:, Adapted to different studies: -Oscillations: data (R) vs simul (S) -Non prolif: simul vs simul Numerically computed Expect large gain in sensitivity to shape distortions because most errors induce large correlations (  P th,  Y,  BR,  E 0 ).

INPC2007-TokyoLhuillier David - CEA Saclay - France24 Models for Unknown  spectra BESTIOLE + Tengblad et al.(JEF2.2) + Qbeta approx BESTIOLE +Tengblad et al. (JEF2.2) + Gross Theory from ENDFBVI, JENDL and JEFF3.1

INPC2007-TokyoLhuillier David - CEA Saclay - France25 Pandemonium Effect 0 0  Z N A Z-1 N’ A If not included in database: - Underestimation of the low E part of the spectrum w.r.t. high energy part - Tengblad’s measurement, not sensitive to pandemonium, partly correct for this effect    det drops fast with E  + difficult analysis of continuum

INPC2007-TokyoLhuillier David - CEA Saclay - France26 Previous Power Measurements

INPC2007-TokyoLhuillier David - CEA Saclay - France27 SONGS San Onofre Nuclear Generating Station Lawrence Livermore and Sandia National Labs Detector located in tendon gallery:  det ~ 10% 469 evts/day Evidence for burn up effect (?)