Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.

Slides:



Advertisements
Similar presentations
The SNO+ Experiment: Overview and Status
Advertisements

Purification of Liquid Scintillators for Low Radioactivity Frank Calaprice Princeton University Borexino Experiment 6/14/13 RENO Workshop June ,
1 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Borexino: A Real Time Liquid Scintillator Detector for Low Energy.
A purification plant for liquid argon (nitrogen) Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg.
First real time 7 Be solar detection in Borexino Davide D’Angelo INFN Sez. Milano On behalf of the Borexino Collaboration.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
GERDA General Meeting, Tübingen, November 2005 Nitrogen and argon radiopurity Grzegorz Zuzel for TG11 MPI-K Heidelberg MPI-K Heidelberg.
Observation of the geo-ν's and reactor anti-ν's in Borexino Yury Suvorov INFN (LNGS) / RRC Kurchatov Inst. APC 28th April 2010, Paris (on behalf of the.
Recent results from Borexino
The Borexino Solar Neutrino Experiment
Stockholm, May 2-6, 2006 SNOW Sub-MeV solar neutrinos: experimental techniques and backgrounds Aldo Ianni Gran Sasso Laboratory, INFN.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Results and Future of the KamLAND Experiment
Honolulu 16/Dec/2005 Marco G. Giammarchi, Infn Milano Geoneutrinos in Borexino Marco G. Giammarchi & Lino Miramonti Dip. di Fisica dell’Universita’ and.
LAUNCH - Low-energy, Astroparticle Underground, Neutrino physics and Cosmology in Heidelberg, Low-level techniques applied in experiments.
IDEA Meeting, MPI-K Heidelberg, October 2004 Techniques for analysis and purification of nitrogen and argon Grzegorz Zuzel MPI-K Heidelberg.
IDEA Meeting, LAL-Orsay, April 2005 Purification of nitrogen (argon) Grzegorz Zuzel MPI-K Heidelberg.
Lino Miramonti - 7 February Honolulu Hawaii (USA) 1 Astroparticle Physics at Gran Sasso Underground Laboratory: Borexino and geo-neutrino Lino Miramonti.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
Aldo IanniNNN05 April 8, Status and future prospects of Gran Sasso Aldo Ianni INFN Gran Sasso Laboratory NNN05 Aussois, April 7-9.
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Low-energy neutrino physics with KamLAND Tadao Mitsui (Research Center for Neutrino Science, Tohoku U.) for the KamLAND collaboration Now2010, Grand Hotel.
Lino Miramonti Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare 1 Invited Seminar at Universidad Mayor de San Andrés (UMSA) La.
Solar Neutrinos Perspectives and Objectives Mark Chen Queen’s University and Canadian Institute for Advanced Research (CIFAR)
Getting the first 7 Be detection: scintillator purification, detector response and data analysis in Borexino Marco Pallavicini Università di Genova & INFN.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Lino MiramontiJune 9-14, 2003, Nara Japan 1st Yamada Symposium Neutrinos and Dark Matter in Nuclear Physics.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Emanuela Meroni Univ. & INFN Milano NO-VE April 15-18, 2008 Borexino and Solar Neutrinos Emanuela Meroni Università di Milano & INFN On behalf of the Borexino.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
A large water shield for dark matter, double beta decay and low background screening. T. Shutt - Case R. Gaitskell - Brown.
Moscow, 15/10/2005 Aldo Ianni, INFN LNGS 1 Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration.
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
G. Testera (INFN Genoa- Italy ) on behalf of the Borexino collaboration Low energy solar neutrino signals in Borexino Kurchatov Inst. (Russia) Dubna JINR.
M. Misiaszek (Institute of Physics, Jagellonian U., Krakow) on behalf of the Borexino Collaboration Results from the Borexino experiment Kurchatov Inst.
Operation of bare Ge-diodes in LN/LAr 1 st IDEA meeting Como, April 8 (2004) Stefan Schoenert.
CTF and low background facility at Gran Sasso A. Ianni a, M. Laubenstein a and Y. Suvorov a a INFN, Gran Sasso Laboratory, Assergi (AQ), Italy The Counting.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
A. IanniIFAE, Catania Mar. 30, Solar neutrinos: present and future Aldo Ianni INFN, Gran Sasso Laboratory.
LoNu Workshop R. B. Vogelaar October 14, 2006 Extraordinary Neutrino Beam Free of Charge For NEUTRINO PHYSICS: WELL DEFINED HIGHEST FLUX (~10 11 cm -2.
May 6, 2006Henderson Dusel Capstone Meeting Low Background Counting A Facility Wish List for the New Underground Laboratory F. Calaprice.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
GEANT4 simulation of the Borexino solar neutrino experiment. Igor Machulin Moscow, Kurchatov Institute On behalf of the Borexino Collaboration Catania,
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
Vulcan08, 26-31May 2008 Barbara Caccianiga, INFN Milano The first real time detection of 7 Be solar neutrinos in Borexino Barbara Caccianiga INFN Milano.
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
1 LTR 2004 Sudbury, December 2004 Helenia Menghetti, Marco Selvi Bologna University and INFN Large Volume Detector The Large Volume Detector (LVD)
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
Radon and its Progeny A Pervasive Problem for Low Background Counting (with Lessons from Borexino and Biology) Frank Calaprice Princeton University March.
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
The first year of Borexino data Davide Franco on behalf of the Borexino Collaboration Milano University & INFN Heavy Quarks and Leptons June 5-9, 2008.
1 DarkSide Collaboration APC Paris, France Augustana College, USA Black Hills State University, USA Fermilab, USA IHEP, China INFN Laboratori Nazionali.
Aldo Ianni for the Borexino collaboration 12th International Workshop on Next Generation Nucleon Decay and Neutrino Detectors Zurich, 7 th Nov 2011.
IDEA Meeting, , Paris, France New results on the Argon purification Grzegorz Zuzel Max-Planck-Institut für Kernphysik, Heidelberg.
Cosmic muon signal and its seasonal modulation at Gran Sasso with the Borexino detector Davide D’Angelo for the Borexino Collaboration Università degli.
5/13/11 FCPA Mini-RetreatDarkSide - S.Pordes1 DarkSide 10 kg Prototype at Princeton Distillation Column for Depleted Argon at Fermilab DarkSide 50 at Gran.
Enter the DarkSide Stefano Davini University of Houston RICAP-13.
New Results from the Borexino Neutrino Experiment
Solar Neutrino Problem
Search for sterile neutrinos with SOX: Monte Carlo studies of the experiment sensitivity Davide Basilico 1st year Workshop – 11/10/17 Tutors: Dott. Barbara.
Davide Franco for the Borexino Collaboration Milano University & INFN
Low background challenges in the JUNO experiment
Low Energy Neutrino Astrophysics
Presentation transcript:

Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration

Outline BOREXINO physics program The BOREXINO detector Scintillator purification techniques Removal of gaseous impurities 11 C background reduction Water and scintillator filling First neutrino events: The CNGS beam Conclusions

The Borexino Collaboration Italy (INFN & University of Milano and Genova, Perugia Univ., LNGS) USA (Princeton Univ., Virginia Tech) Russia (RRC KI, JINR, INP MSU, INP St. Petersburg) Germany (MPIK Heidelberg, TU München) France (APC Paris) Hungary (Research Institute for Particle & Nuclear Physics) Poland (Institute of Physics, Jagiellonian University, Cracow)

BOREXINO physics program Solar neutrinos Supernova neutrinos Reactor anti-neutrinos Geological anti-neutrinos Rare decay search

Solar neutrino physics Two types of solar neutrino experiments Radiochemical experiments (low energy threshold, integrated flux) Water experiments (real-time information, higher energy threshold: Only ~10 -4 of total flux) BOREXINO (and KamLAND solar phase): 1 st real-time experiment at low energies

Solar neutrino spectrum BOREXINO  m 2 ≈ 8·10 -5 eV 2 27  <  < 38° Vacuum oscillations Matter effects Transition region

Solar neutrino physics Measurement of 7 Be- -flux (~35 per day) 10% measurement yields pp- -flux with <1% uncertainty (Gallium experiments!) Measurement of pep- -flux (~1 per day) directly linked with pp- -flux Measurement of CNO- -fluxes (~1 per day) Energy production in heavy stars SSM + flavour conversion

Supernova neutrinos Main reaction channels N Events Inverse beta decay (anti- e ) ~80 12 C(, ’) 12 C* (E  = 15.1 MeV) ~20 -proton elastic scattering ~55 Galactic supernova: 10 kpc 3  ergs threshold: 250 keV

Anti-neutrino physics: European reactors Gran Sasso laboratory ≥ 800 km baseline Averaged oscillation signal expected.

Anti-neutrino physics: Geo-neutrinos from U/Th KamLAND results Nature 436 (2005) Expected spectrum: Large fraction of earth’s total heat (40 TW) from radioactivity (U/Th).

e-e-

Radiopurity requirements in the BOREXINO scintillator Expected 7 Be- ν -rate: ~35 events per day Each background contribution ≤1 event per day 14 C/ 12 C ~ nat K ( 40 K)~ g/g ( g/g) 232 Th~ g/g 238 U ( 226 Ra)~ g/g (3· g/g) Ar ( 39 Ar) ~70 Vol.-ppb(STP) Kr ( 85 Kr)~0.1 Vol.-ppt(STP)

Suppression of radioactive background 15 years of R&D: Development of new purification and detection techniques Careful material selection (  -spectrometry, mass spectrometry, 222 Rn emanation studies) e.g. Inner Vessel:U/Th: ~ g/g 222 Rn emanation: <1  Bq/m 2 Scintillator purification: Distillation, H 2 O extraction, Silicagel column, nitrogen sparging

BOREXINO purification columns

Counting Test Facility (CTF) Experimentally proven: Purity requirements can be fulfilled!

Example: Nitrogen sparging of scintillator Countercurrent N 2 /PC flow Gaseous impurities transferred to N 2 Achievable purity determined by N 2 purity Ultrapure N 2 required! N 2 purity requirements PCNitrogen Argon ( 39 Ar)<70 vol-ppb<0.4 vol-ppm Krypton ( 85 Kr)<0.1 vol-ppt 222 Rn ( 210 Pb) <70  Bq/m 3 (STP)<7  Bq/m 3 (STP)

BOREXINO N 2 purification plant Production rate: 100 m 3 /h 222 Rn ≤0.5 Bq/m 3 (STP)  ≤1 222 Rn-atom in 4 m 3 !

Nitrogen tests Nitrogen from different European suppliers investigated. Several plants can produce low Ar/Kr N 2 However, strong deviations after delivery (contamination during storage, transport and refilling)  N 2 delivery chain has to be tested under realistic conditions

SOL LN 2 MPIK Delivery chain succesfully tested: Ar: ~0.01 ppb (Goal: 0.4 ppm) Kr: ~0.02 ppt (Goal: 0.1 ppt)

11 C background reduction Cylindrical cut around muon-track Spherical cut around neutron capture to reject 11 C event 11 C production with neutron (95% prob) PR C 71, (2005) Vetoing the intersection of the 2 volumes for C-lifetimes. 11 C production measured in CTF: PR C 74, (2006) Main background for pep / CNO neutrinos: Cosmogenically produced 11 C muon track

BOREXINO filling Long stop after spill accident in 2002 Improvement of Gran Sasso safety and environmental standards Operations with liquid resumed in 2006 BOREXINO filling strategy: 1: Filling inner detector with pure water 2: Replacing water by scintillator 3: Using same (+new) water to fill outer detector

PC procurement Since January:  Fresh-PC trucking from Sarroch to LNGS

Background data taking started

The CNGS neutrino beam  -beam from CERN Laura Perasso

First neutrino events First CNGS run in August h of data taking 55 t of water (h max ~1.8 m) No reconstruction, only time difference used Expectation: 5  -events (neutrino interactions in the rock) seen 5 events

Second CNGS run in October Detector filled with 1120 t of water (80% full), h max ~ 10 m 10 h of running time Expected: 10 CNGS  events seen: 12 events

A CNGS event  from CERN

Conclusions After a long forced stop: BOREXINO water filling started in August 2006 Scintillator filling since end 2006 Detector is alive: Background data taking has started (not yet fully shielded) First -events from CNGS beam detected BOREXINO detector expected to be in its final configuration around May  Physics data taking in 2007!