RECENT STUDIES OF OXYGEN- IODINE LASER KINETICS Azyazov V.N. and Pichugin S.Yu. P.N. Lebedev Physical Institute,Samara Branch, Russia Heaven M.C. Emory.

Slides:



Advertisements
Similar presentations
Group IV presentation: Frímann, Helgi, Long & Nanna.
Advertisements

Electron Spectroscopies of InN grown by HPCVD Department of Physics and Astronomy Georgia State University Atlanta, Georgia Rudra P. Bhatta Solid State.
1.5 Types of lasers Lasers may be classified according to several criteria: Whether the gain medium is a gas, liquid, or solid Fixed frequency or tuneable.
AA and Atomic Fluorescence Spectroscopy Chapter 9
Lecture 3 Kinetics of electronically excited states
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
KINETICS OF THE SELF-REACTION OF NEOPENTYL RADICALS Ksenia A. Loginova and Vadim D. Knyazev Department of Chemistry, The Catholic University of America,
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
Voltage divider HV - 2Kv supply HX Nozzle Turbo Pump TOF Tube Focus lens MCP Detector Oscilloscope Computer EXT Excimer Laser One Shot Cycle Input Output.
Electromagnetic waves. Electronic transitions Vibrational fine structure.
TOF Mass Spectrometer &
Probing the electronic structure of the Nickel Monohalides: Spectroscopy of the low-lying electronic states of NiX (X=Cl, Br, I). Lloyd Muzangwa Molecular.
APOGEE: The Apache Point Observatory Galactic Evolution Experiment l M. P. Ruffoni 1, J. C. Pickering 1, E. Den Hartog 2, G. Nave 3, J. Lawler 2, C. Allende-Prieto.
Ivan O. Antonov, Michael C. Heaven Emory University, Department of Chemistry 1515 Dickey Drive, Atlanta GA
Carbon Nanotube Formation Detection of Ni atom and C 2 Gary DeBoer LeTourneau University Longview, TX NASA Johnson Space Center Thermal Branch Structures.
Vibrational Relaxation of CH 2 ClI in Cold Argon Amber Jain Sibert Group 1.
Oxygen Atom Recombination in the Presence of Singlet Molecular Oxygen Michael Heaven Department of Chemistry Emory University, USA Valeriy Azyazov P.N.
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
B.SC.II PAPER-B (OPTICS and LASERS)
Application of Synchrotron Radiation to Chemical Dynamics Research Shih-Huang Lee (李世煌) National Synchrotron Radiation Research Center (NSRRC) 國家同步輻射研究中心.
Controlling Matter with Light Robert J. Gordon University of Illinois at Chicago DUV-FEL Seminar January 6, 2004 NSF, DOE, PRF, UIC/CRB, Motorola.
Lecture 5 Intermolecular electronic energy transfer
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
PUMP-PROBE MEASUREMENTS OF ROTATIONAL ENERGY TRANSFER RATES IN HBr + HBr COLLISIONS M. H. Kabir, I. O. Antonov, and M. C. Heaven Emory University Department.
Experimental and computational studies of elementary reactions involving small radicals Combustion chemistry Planetary and interstellar chemistry The kinetics.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Fluorescence Spectroscopy
§10. 6 Photochemistry. 6.1 Brief introduction The branch of chemistry which deals with the study of chemical reaction initiated by light. 1) Photochemistry.
MOTIVATIONS : Atmospheric Chemistry Troposphere Chemistry – Ozone Production RO 2 + NO → RO + NO 2 NO 2 → NO + O( 3 P) O( 3 P) + O 2 + M → O 3 + M.
SPECTROSCOPY AND ANALYTICAL CHEMISTRY  A variety of spectroscopic techniques can be used to study/elucidate ground and excited state atomic and molecular.
Scanning excitation and emission spectra I Wavelength (nm) )Scan excitation with emission set at 380 nm -λ ex,max = 280 nm 2) Scan emission.
Atmospheric Chemical Kinetics of Reactions of 2-butoxy and 3-pentoxy Radicals with NO and O 2 Wei Deng, Andrew J. Davis, Lei Zhang and Dr. Theodore S.
Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)
LASERS. LASER is an acronym for light amplification by Stimulated Emission of radiation. When radiation interacts with matter we have three processes.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Methylene blue can be decomposed by OH radicals. Decoloration characteristics of organic dye in an aqueous solution by a pulsed-discharge plasma Shin Ikoma.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
Decomposition rate of benzene increases almost linearly against time, and it tends to be constant around 200s. While the decomposition rate increases,
Rotational and Vibrational Energy Transfer from the First Overtone Stretch of Acetylene Keith Freel Jiande Han Michael C. Heaven.
Re-analysis of the dispersed fluorescence spectra of the C 3 -rare gas atom complexes Yi-Jen Wang, Anthony J. Merer, Yen-Chu Hsu 王意禎,米安東,許艷珠 IAMS, Academia.
Plot 1: Estimate of Kd for oxidized FAD binding to NSMOA in the presence of saturating benzene. Solutions containing 50 µM oxidized FAD and benzene concentrations.
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
Neal Kline, Meng Huang, and Terry A. Miller Department of Chemistry and Biochemistry The Ohio State University.
Dynamical “Fingerprinting” in Formaldehyde Dissociation Steven J. Rowling Scott H. Kable Sridhar A. Lahankar Arthur G. Suits.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
Near-Infrared Photochemistry of Atmospheric Nitrites Paul Wennberg, Coleen Roehl, Geoff Blake, and Sergey Nizkorodov California Institute of Technology.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
1. 2 Natural Anthropogenic 3  Production of OH radical  An important source of HOx  The observed yields: 10% - 100%.  Generate Criegee intermediate.
COIL operation with iodine atoms generated in a glow discharge P.A. Mikheyev, V.N. Azyazov, M.V. Zagidullin, N.I. Ufimtsev, N.A. Khvatov, A.I. Voronov.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
2 3 With UV irradiation: Cl 2 + h  2 Cl* Cl* + H 2 (v = 0)  HCl + H Cl* + matrix  Cl Cl + H 2 (v = 0)  no reaction With IR irradiation: H 2 (v =
Night OH in the Mesosphere of Venus and Earth Christopher Parkinson Dept. Atmospheric, Oceanic, and Space Sciences University of Michigan F. Mills, M.
Many mass spectra are observed in addition to those of nitrogen (28amu) and benzene (78amu) molecules between 1 and 80amu, when the discharge is not generated.
Toward Two-Color Sub-Doppler Saturation Recovery Kinetics in CN (X, v = 0, J) Presented By: Hong Xu 06/22/2015 Chemistry Department Brookhaven National.
Laserlaser. Laser printer Laser pointer Laser: everywhere in your life.
Experimental results II Experimental results I
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
Light Amplification by Stimulated
N2 Vibrational Temperature, Gas Temperature,
ENERGY TRANSFER IN HBr + HBr AND HBr + He COLLISIONS
Experimental techniques in reaction kinetics
Jun Jiang, Angelar Muthike, and Robert W. Field
Förster Resonance Energy Transfer (FRET)
Frauke Schroeder and Edward R. Grant Department of Chemistry
Francesca Pennacchietti, Travis J. Gould, Samuel T. Hess 
Characterization of the Photoconversion on Reaction of the Fluorescent Protein Kaede on the Single-Molecule Level  P.S. Dittrich, S.P. Schäfer, P. Schwille 
Presentation transcript:

RECENT STUDIES OF OXYGEN- IODINE LASER KINETICS Azyazov V.N. and Pichugin S.Yu. P.N. Lebedev Physical Institute,Samara Branch, Russia Heaven M.C. Emory University, Atlanta, USA

Chemical OIL (COIL) Cl 2 +НО 2 -  HCl + Cl - +О 2 ( 1  ) P О2  100 Тор,   =[О 2 ( 1  )]/[O 2 ]  50 % Discharge OIL (DOIL) О 2 (Х) + е  О 2 ( 1  ) + е P О2  10 Тор,    20 % O 3 -SF 6 -N 2 O О 2 (а 1  )-O( 1 D)-I 2 (или CH 3 I) UV photolysis Photolytic OIL (PhOIL) О 3 + hv  О 2 ( 1  ) + O( 1 D) P О2  1 Тор,    90 % О2О2 + - О 2 ( 1  ), О NO 2 I 2 Nozzle Resonator О2О2

ENERGY LEVELS OF I, O 2, I 2, H 2 O

List of reactions that of importance in the DOIL and PhOIL # ProcessRate constant, cm 3 s -1 O 2 ( 1  ) formation 1 O 2 ( 3  ) + e  O 2 ( 1  ) + e EE energy exchange 2323 O 2 ( 1  ) + I( 2 P 3/2 )  O 2 ( 3  ) + I( 2 P 1/2 ) O 2 ( 3  ) + I( 2 P 1/2 )  O 2 ( 1  ) + I( 2 P 3/2 ) 7.8× × I atoms formation 4545 I 2 (X) + O( 3 P)  IO+ I( 2 P 3/2 ) IO + O( 3 P)  O 2 ( 3  ) + I( 2 P 3/2 ) 1.4× × I( 2 P 1/2 ) quenching I( 2 P 1/2 ) + O 2 ( 1  )  I( 2 P 3/2 ) + O 2 ( 1  ) I( 2 P 1/2 ) + I 2 (X)  I( 2 P 3/2 ) + I 2 (X) I( 2 P 1/2 )+ O( 3 P)  I( 2 P 3/2 ) + O( 3 P) I( 2 P 1/2 )+ O 3  products I( 2 P 1/2 )+ NO 2, N 2 O 4  I( 2 P 3/2 ) + NO 2, N 2 O 4 I( 2 P 1/2 )+ N 2 O  I( 2 P 3/2 ) + N 2 O 1.1× × ? К(Т)? O 3 formation O 2 + O 2 + O( 3 P)  O 3 + O 2 O( 3 P) + O( 3 P) + O 2  O 3 + O( 3 P) O( 3 P) + O 2 + Ar  O 3 + Ar 5.9× cm 6 /s O 3 removal I( 2 P 3/2 ) + O 3  IO + O 2 O 2 ( 1  ) + O 3  O 2 + O 2 + O( 3 P) O 2 ( 1  ) + O 3  O 2 ( 1  ) + O    IO +IO reaction IO + IO  O I( 2 P 3/2 )  IO 2 + I( 2 P 3/2 ) IO + IO + M  I 2 O 2 + M 8× × × cm 6 /s O 2 (a 1  ) quenching 20 O 2 ( 1  ) +O( 3 P) + O 2  2O 2 + O( 3 P) ? O( 3 P) scavenge 21 O( 3 P) + NO 2  O 2 + NO9.7 

The low-pressure flow cell apparatus with a jet-type SOG Dependence of the I* concentration on the distance along the flow for  w =3 %, O 2 :N 2 =1:1

Quenching of O 2 ( 1  ) has a minimal effect on the I 2 dissociation rate Reducing [O 2 ( 1  )] by an order of magnitude caused a slight increasing of the dissociation time O2(1)O2(1) I* Testing role of O 2 ( 1  ) by addition of CO 2

Role of I 2 (B) in the iodine dissociation Branching fraction  B =5  10 5 s -1,  b =0.08 s -1 I 2 (A, A') + O 2 (a)  I 2 ( 1 Π 1u ) + O 2 (X)  I + I + O 2 (X), approx=100 %  I 2 (B) + M  I + I + M, < 1 % COIL active medium luminescence spectra in the visible range recorded with a resolution of 1 nm at P c = 2.3 Torr,  I2 =0.5%, N 2 :O 2 =1:1

Estimation of excitation probabilities from Barnault et al. measurements I*+ I 2  I+I 2 (X,v)  v - excitation probability of v-th vibrational level  m≤v≤n =  v  25  0.1  10<v  23  0.9 (0 for dashed curve ) Standard dissociation model with  v  25  0.1 can not provide observed dissociation rates in COIL medium. About 20 molecules of O 2 (a) consumed to dissociate one I 2 molecule if standard model is predominant dissociation pathway.

Pump-probe technique used to study OIL kinetics Monochro mator Ge Digital Oscilloscope Nd/YAG Pumped Dye Laser Delay Generator Pump Fluorescence cell I 2 +Ar Light baffles Quenching gas Excimer laser Rate of I 2 (A') quenching (R q ) depends on CO 2 partial pressure Р СО2 at P Ar =50 Torr, Р I2 =0.013 Torr and T=300 K K CO2 = 8.5  cm 3 /s K Ar = 2.7  cm 3 /s K O2 = 6  cm 3 /s K I2 = 4.8  cm 3 /s

N 2 O,NO 2 or O 3 Pump 193 or 248 nm Power meter 1268 nm filter Ge photo- detector O 2 ( 1  ) formation: N 2 O +193 nm  O( 1 D) + N 2 O( 1 D) + N 2 O  N 2 + O 2 ( 1  ) ? O( 3 P) + NO 2  NO + O 2 ( 1  ) ? O nm  O( 1 D) + O 2 ( 1  ) O 2 ( 1  )  O 2 ( 3  )+1268 nm Branching fraction for O 2 ( 1  ) from O( 1 D)+N 2 O & O( 3 P)+N 2 O Typical temporal profiles of the 1268 nm emission intensities for the N 2 O photolysis experiment (I N2O ) – P N2O =207 Torr, P Ar =407 Torr and for the O 3 photolysis experiment (I O3 )- P N2 =755 Torr, P Ar =1.3 Torr # I N2O mV I O3 mV  E 193 mJ  E 248 mJ   a Yield O( 1 D) + N 2 O  N 2 + O 2 ( 1  ) 100 % O( 3 P) + NO 2  NO + O 2 ( 1  ) <10 %

Quenching I( 2 P 1/2 ) by О( 3 Р), О 3 N 2 O нм  N 2 + O( 1 D) O( 1 D) + N 2 O  N 2 + O 2 ( 1  )  NO + NO O nm  O( 1 D) + O 2 ( 1  ) O( 1 D) + CO 2 (N 2 )  O( 3 P) + CO 2 (N 2 ) I 2 (X) + O( 3 P)  IO+ I( 2 P 3/2 ) IO + O( 3 P)  O 2 ( 3  ) +I( 2 P 3/2 ) I( 2 P 3/2 ) + O 2 ( 1  )  I( 2 P 1/2 ) + O 2 ( 3  ) I( 2 P 1/2 ) + O( 3 P)  I( 2 P 3/2 ) +О( 3 P) I( 2 P 1/2 ) + O 3  products I( 2 P 1/2 )  I( 2 P 3/2 )+ h ( = 1315 nm) Dashed lines are calculations at K O =1.2  cm 3 /s K O3 =1.8  cm 3 /s

Quenching I( 2 P 1/2 ) by NO 2, N 2 O 4 & N 2 O CF 3 I + h (248 nm)  CF 3 + I( 2 P 1/2 )  NO2 =2.85x cm 2 NO 2 + h (248 nm)  O + NO  NO2 =2x cm 2 N 2 O 4 + h (248 nm)  NO 2 + NO 2  N2O4 = 80  NO2  O+ NO+NO 2 K N2O4 = (3.7  0.5)× cm 3 /s K NO2 = (2.9  0.3)× cm 3 /s K N2O = (1.3  0.1)× cm 3 /s

Temporal emission intensity of O 2 ( 1  ) at P O3 =2.4 Torr, P tot =773 Torr. Dashed lines are calculations at K=1.1x cm 6 /s. NO 2 emission intensity near to 600 nm at P O3 =2.4 Torr, P N2O =2.8 Torr, P tot =762 Torr Quenching of O 2 (a 1  ) in the presence О 2 and O( 3 P) O 3 +h (248 nm)  O( 1 D) + O 2 ( 1  )  O( 3 P) + O 2 (X) O 2 ( 1  )  O 2 ( 3  )+ h (1268 nm) O( 3 P) + O 2 ( 1  ) + O 2  O( 3 P) + 2O 2

Conclusions Standard dissociation model with  v  25  0.1 can not provide observed dissociation rates in COIL medium. About 20 molecules of O 2 (a) consumed to dissociate one I 2 molecule if standard model is predominant dissociation pathway. The total excitation probabilities of I 2 (X,v) in reaction I* + I 2  I + I 2 (X,v>10) are  v  25  0.1 and  10<v<25  0.9 I 2 (B) and takes a minor part in iodine dissociation and O 2 (b) does not play a noticeable role in I 2 (B) formation I 2 dissociation pathway involving O 2 (b) state is not major channel

 Measured kinetic constants : I 2 (A) + CO 2  I 2 (X) + CO 2 (8.5  0.9)  cm 3 /s I 2 (A) + O 2  I 2 (X) + O 2 (6.0  0.6)  cm 3 /s I 2 (A) + I 2  I 2 (X) + I 2 (4.8  0.9)  cm 3 /s I 2 (A) + Ar  I 2 (X) + Ar(2.7  0.3)  cm 3 /s О 2 (b) + CO 2  О 2 (а) + CO 2 (6.1  0.5)  cm 3 /s О 2 (b) + O 3  products(1.9  0.2)  cm 3 /s I( 2 P 1/2 ) + O( 3 P)  I + O( 3 P) (1.2±0.1)  cm 3 /s I( 2 P 1/2 ) + O 3  products(1.8±0.4)  cm 3 /s I( 2 P 1/2 ) + NO 2  I + NO 2 (2.9±0.3)  cm 3 /s I( 2 P 1/2 ) + N 2 O 4  I + N 2 O 4 (3.7±0.5)  cm 3 /s I( 2 P 1/2 ) + N 2 O  I + N 2 O(1.3±0.1)  cm 3 /s O 2 (a 1  ) + O( 3 P) + O 2  O( 3 P) + 2O 2 (1.1±0.2)  cm 6 /s  Yield of O 2 (a 1  ) in reactions O( 1 D) + N 2 O  N 2 + O 2 ( 3  ) or O 2 ( 1  ) - 1±0.12 O( 3 P or 1 D) + NO 2  NО + O 2 ( 3  ) or O 2 ( 1  ) - < 0.1 Conclusions

O 2 (a,v=3)+I 2 (X)  O 2 (X)+2I (97) O 2 (a,v=1)+I 2 (X,v  15)  O 2 (X)+2I (102) O 2 (a,v=2)+I 2 (X,v  8)  O 2 (X)+2I (103) O 2 (b) + I 2 (X)  O 2 (X) + 2I (21) Developed I 2 dissociation model I* + I 2  I + I 2 (10<v<25) (33) I 2 (10<v<25)+O 2 (a)  O 2 (X)+I 2 (A’,A) (101) O 2 (a,v=1)+I 2 (X)  O 2 (X)+I 2 (A’) (95) O 2 (a,v=2)+I 2 (X)  O 2 (X)+I 2 (A) (96) O 2 (a)+I 2 (A’,A)  O 2 (X)+2I (25) Potential energy curves of I 2. The red and blue arrows show the excitation pathways of energy states lying bellow and above the I 2 dissociation limit, respectively. The inscriptions above arrows denote the reaction producing excitation Heidner et al. model O 2 (a)+I 2 (X)  O 2 (X)+ I 2 (20<v<45) (32) I 2 (20<v<45)+O 2 (a)  O 2 (X)+2I (34) I* + I 2  I + I 2 (25<v<45) (33)

Conclusions A model that involves excitation of I 2 (A’,A) by reactions O 2 (a,v=1)+I 2 (X)  O 2 (X)+I 2 (A’) (95) O 2 (a,v=2)+I 2 (X)  O 2 (X)+I 2 (A) (96) O 2 (a)+I 2 (A’,A)  O 2 (X)+2I (25) I* + I 2  I + I 2 (10<v<25) (33) I 2 (10<v<25)+O 2 (a)  O 2 (X)+I 2 (A’,A) (101) yields results that are in reasonable agreement with the flow tube experiments.