1 CHI Summary Transient CHI (XP606) –All systems operated reliably without any faults Edge Current drive (XP533)

Slides:



Advertisements
Similar presentations
XP 1157 Increasing the CHI start-up current magnitude in NSTX B.A. Nelson et al. 1.
Advertisements

ASC XP-823 Error Field Correction and Long Pulse J.E. Menard, S.P. Gerhardt Part 1 Determine the source of, and optimal correction for, the observed n=3.
Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, M.G. Bell 2, T.R. Jarboe 1, B.A. Nelson 1, D.Mueller 2, R. Maqueda 3, R. Kaita 2,
STATUS OF THE HHFW CURRENT DRIVE EXPERIMENT ON NSTX Phil Ryan, Randy Wilson, David Swain, Bob Pinsker March 3, 2004 run date. This XP is focused on CD.
Flux-surface closure DRAFT Bick Hooper July 11, 2012.
Physics of fusion power Lecture 10 : Running a discharge / diagnostics.
TITLE RP1.019 : Eliminating islands in high-pressure free- boundary stellarator magnetohydrodynamic equilibrium solutions. S.R.Hudson, D.A.Monticello,
9/20/04NSTX RESULTS REVIEW NSTX rtEFIT implementation progress results NSTX 2004 RESULTS REVIEW September 20&21, 2004 REAL-TIME EQUILIBRIUM RECONSTRUCTION.
NSTX S. A. Sabbagh XP501: MHD spectroscopy of wall stabilized high  plasmas  Motivation  Resonant field amplification (RFA) observed in high  NSTX.
Coupling Solenoid-free Coaxial Helicity Injection Started Discharges to Induction in NSTX Office of Science R. Raman University of Washington For the NSTX.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
SUNIST SUNIST- Sino UNIted Spherical Tokamak Status of SUNIST spherical tokamak in 2006 HE Yexi, ZHANG Liang, *FENG Chunhua, FU Hongjun, GAO Zhe, TAN Yi,
V. A. Soukhanovskii 1 Acknowledgements: M. G. Bell 2, R. Kaita 2, H. W. Kugel 2, R. Raman 3, A. L. Roquemore 2 1 Lawrence Livermore National Laboratory,
R. Piovan “RFX-mod: what does...”RFX 2009 Programme Workshop Padova, Jan RFX – mod: what does the present device allow to do? R. Piovan.
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
Mid-Run Assessment - ISD S. Kaye, D. Gates 10 May 2006.
V. A. Soukhanovskii NSTX Team XP Review 31 January 2006 Princeton, NJ Supported by Office of Science Divertor heat flux reduction and detachment in lower.
Demonstration of 200 kA CHI Startup Current Coupling to Transformer Drive on NSTX B.A. Nelson, R. Raman, T.R. Jarboe, University of Washington D. Mueller,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
NSTX-U cryo/particle control discussion #8 December 19, 2012 What have we done, or plan to do to be responsive to PAC questions, and in prep for 5 year.
D. A. Rasmussen, NCSX Research Forum 2006 Page 1 ECH and Fast Wave Electron Heating Systems for NCSX Tim Bigelow, Dave Rasmussen, Phil Ryan, Mike Cole.
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
Integration and Plasma Control D.A. Gates, M.G. Bell NSTX 5-Year Plan June 30-July 2, 2003.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
Summary of the SFPS XPs R. Raman, D. Mueller University of Washington Princeton Plasma Physics Laboratory and the NSTX Research Team FY09 NSTX Results.
XP817: Transient CHI – Solenoid free Plasma Startup and Coupling to Induction Office of Science R. Raman, B.A. Nelson, D. Mueller, T.R. Jarboe, M.G. Bell.
Brent Stratton for the NCSX Team Princeton Plasma Physics Laboratory Oak Ridge National Laboratory NCSX Program Advisory Committee Meeting #8 Princeton.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
NSTX EXPERIMENTAL PROPOSAL - OP-XP-825 Title: HHFW Heating/CD phase scans in D L-mode plasmas P. Ryan, J. Hosea, R. Bell, L. Delgado-Aparicio, S. Kubota,
Edge characterization experiments in the National Spherical Torus Experiment V. A. Soukhanovskii and NSTX Research Team Session CO1 - NSTX ORAL session,
Progress on NSTX towards steady state at low aspect ratio D. A. Gates, Princeton Plasma Physics Laboratory on behalf of the NSTX Research Team Supported.
NSTX HIGH HARMONIC FAST WAVE CALCULATIONS
Rajesh Maingi Oak Ridge National Laboratory M. Bell b, T. Biewer b, C.S. Chang g, R. Maqueda c, R. Bell b, C. Bush a, D. Gates b, S. Kaye b, H. Kugel b,
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
TITLE Stuart R.Hudson, D.A.Monticello, A.H.Reiman, D.J.Strickler, S.P.Hirshman, L-P. Ku, E.Lazarus, A.Brooks, M.C.Zarnstorff, A.H.Boozer, G-Y. Fu and G.H.Neilson.
1 EBW & HHFW Research - G. Taylor PAC-19 2/23/06 EBW & HHFW Research (Including EBW Collaborations with MAST & P EGASUS ) Gary Taylor presented on behalf.
RFX-mod programme workshop, January 2009 Scenario and operational issues for high current L. Zanotto, R. Cavazzana, S. Dal Bello, F. Milani.
NCSX NCSX CDR May 21-23, 2002 H.W. Kugel Slide 1 Conceptual Design for NCSX Auxiliary Systems Heating, Fueling,Wall Conditioning and Vacuum Systems.
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
GOLEM operation based on some results from CASTOR
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
NSTX XP818: ELM mitigation w/midplane coils – SAS, JKP, RM, SG XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric.
1 Plasma Start-up In NSTX Using Transient CHI R. Raman, T.R. Jarboe 1, D. Mueller 2, B.A. Nelson 1, M.G. Bell 2, M. Ono 2, T. Bigelow 3, R. Kaita 2, B.
Solenoid Free Plasma Start-up Mid-Run Summary (FY 2008) R. Raman and D. Mueller Univ. of Wash. / PPPL 16 April 2008, PPPL 1 Supported by Office of Science.
Summary of RF Work To Date G. Taylor NSTX Monday Physics Meeting June 21, 2010 NSTX Supported by 1.
M. Ono NSTX FWP 2014 Budget Planning Meeting Apr. 15, 2012 Chapter 10. NSTX-U Facility Status and Proposed Upgrades Text, figures – mostly there except.
Characterization of Fast Ion Power Absorption of HHFW in NSTX A. Rosenberg, J. Menard, J.R. Wilson, S. Medley, R. Dumont, B.P. LeBlanc, C.K. Phillips,
Martin Peng NSTX Program Advisory Committee Meeting (PAC-14) January 21 – 22, 2003 PPPL Princeton, NJ PAC-13 Action Items Supported by Columbia U Dartmouth.
HHFW heating experiments in NSTX S. Bernabei, J. Hosea, B. LeBlanc, C. K. Phillips, P. Ryan, D. Swain, J. R. Wilson and the whole NSTX crew. ORNL.
1 NSTX EXPERIMENTAL PROPOSAL - OP-XP-712 Title: HHFW Power Balance Optimization at High B Field J. Hosea, R. Bell, S. Bernabei, L. Delgado-Aparicio, S.
Development and Assessment of “X-point limiter” Plasmas M. Bell, R. Maingi, K-C. Lee Coping with both steady-state and transient (ELM) heat loads is a.
Simulation of Non-Solenoidal Current Rampup in NSTX C. E. Kessel and NSTX Team Princeton Plasma Physics Laboratory APS-DPP Annual Meeting, Savannah, Georgia,
Scaling experiments of perturbative impurity transport in NSTX D. Stutman, M. Finkenthal Johns Hopkins University J. Menard, E. Synakowski, B. Leblanc,R.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
Recent Disruption Studies in NSTX S.P. Gerhardt. Four Destructive Phenomena Associated With Disruptions Thermal Quench –Extremely Rapid (
NSTX S. A. Sabbagh XP452: RWM physics with initial global mode stabilization coil operation  Goals  Alter toroidal rotation / examine critical rotation.
T. Biewer, Sep. 21 st, 2004 NSTX Results Review of 11 Dependence of Edge Flow on Magnetic Configuration in NSTX T.M. Biewer, R.E. Bell, D. Gates,
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 
Engineering Operations TF Commissioning Mechanical testing of TF flag/box assemblies complete, inner bundle installed, and all joints made up. Joint resistance.
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
New prototype modulator for the European XFEL Project (DESY) Pulse Step Modulator (PSM) Technology for long pulse applications.
1 Edge Characterization Experiment in High Performance (highly shaped) Plasmas R. J. Maqueda (Nova Photonics) R. Maingi (ORNL) V. Soukhanovskii (LLNL)
For the NSTX Five-Year Research Program 2009 – 2013 M.G. Bell Facility and Diagnostic Plans.
Demonstration of Coupling CHI Started Discharges to Induction in NSTX R. Raman 1, B.A. Nelson 1, T.R. Jarboe 1, D. Mueller 2, M.G. Bell 2, J. Menard 2,
Multitube Helicon Source with Permanent Magnets
JongGab Jo, H. Y. Lee, Y. H. An, K. J. Chung and Y. S. Hwang*
Operation status of KTX
Design and Fabrication of Versatile Experiment Spherical Torus (VEST)
Presentation transcript:

1 CHI Summary Transient CHI (XP606) –All systems operated reliably without any faults Edge Current drive (XP533)

2 Transient CHI (March 2006) Transient CHI experiment were run in the configuration (15mF, 1.5kV) used during 2005 to produce plasma currents that show current persistence after the injector current is reduced to zero. 60kA of closed flux current was produced, and the discharge was diagnosed with the Thomson scattering diagnostic, fast visible camera, soft x-ray, bolometer array and spectroscopy systems. A toroidal field scan was conducted. Results are consistent with observations from the NSTX 2005 run and with results from the HIT-II experiments at the University of Washington, and indicate that higher capacitor bank voltage and good vessel conditions are important requirements for increasing the magnitude of the closed flux current. On many discharges low power HHFW (50 to 150kW) was applied to study antenna loading and coupling of these waves to the CHI target.

3 Transient CHI (May 2006) This run utilized a new capacitor based snubber and new noise suppression MOVs (Metal Oxide Varistors) to allow operation above the 1.5kV used in previous experiment. These systems worked very well and limited the injector voltage to about 1.75kV. On NSTX, the applied CHI voltage was increased above 1.5kV for the first time. Using a 15mF capacitor bank the magnitude of the initial peak current was increased up to 180kA and at least 70kA of closed flux current was generated. On a few discharges modest power HHFW (about 1MW) was applied to study antenna loading and coupling of these waves to the CHI target

4 Discharges with currents of 60kA or more routinely produced

5 Improvements to the closed flux current magnitude requires these improvements Improve time response of current monitor –Possible installation of current monitor from HIT-II Capacitor bank size needs to be varied –To compensate for voltage droop due to new snubber –Requires 3-4 controlled accesses Wall pumping not yet utilized –March run showed the importance of residual neutrals in vessel –Will use He plasma discharges –Use of Li was the original plan (similar to Ti-gettering on HIT-II) New stable discharges with higher injector current now produced (May run) –Increased plenum size –Requires more capacitors to utilize this scenario –Physics of Lo and Hi injector current modes important for scaling studies

6 Edge Current Drive Developed target two target shapes –single NBI source for MSE Noise on flux loops (and Ip Rogowski) –Loss of control of plasma position (moves out) –Possible work around is to clamp all coil currents during CHI Observed up to 30 kA of Ip –Plasma motion makes determination of persistence impossible –MSE data may provide some information

7 Run time requirements NSTX only ST utilizing CHI –Results from HIT-II now reproduced on NSTX –NSTX injector geometry requires additional system optimization (simple geometry in HIT-II) Transient CHI used about 2 days –1 day of run time left in base plan –Planned experiments, which require controlled access, He discharges and optimization requires a minimum of two run days –Some time to be used for tests with and without HHFW