Peer-to-peer and agent-based computing Basic Theory of Agency.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 1 Embedded Computing.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
1 Chapter 40 - Physiology and Pathophysiology of Diuretic Action Copyright © 2013 Elsevier Inc. All rights reserved.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
Source of slides: Introduction to Automata Theory, Languages and Computation.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
Multiplying binomials You will have 20 seconds to answer each of the following multiplication problems. If you get hung up, go to the next problem when.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
ADDING INTEGERS 1. POS. + POS. = POS. 2. NEG. + NEG. = NEG. 3. POS. + NEG. OR NEG. + POS. SUBTRACT TAKE SIGN OF BIGGER ABSOLUTE VALUE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING Think Distributive property backwards Work down, Show all steps ax + ay = a(x + y)
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Peer-to-peer and agent-based computing Agents & Multi-Agent Systems: Introduction (Contd)
Peer-to-peer and agent-based computing Basic Theory of Agency (Contd)
Automata Theory Part 1: Introduction & NFA November 2002.
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
C1 Sequences and series. Write down the first 4 terms of the sequence u n+1 =u n +6, u 1 =6 6, 12, 18, 24.
ZMQS ZMQS
Auto-scaling Axis2 Web Services on Amazon EC2 By Afkham Azeez.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Chapter 11: Models of Computation
Turing Machines.
Randomized Algorithms Randomized Algorithms CS648 1.
ABC Technology Project
© S Haughton more than 3?
Twenty Questions Subject: Twenty Questions
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Energy & Green Urbanism Markku Lappalainen Aalto University.
Database System Concepts and Architecture
© 2012 National Heart Foundation of Australia. Slide 2.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Past Tense Probe. Past Tense Probe Past Tense Probe – Practice 1.
Reaching Agreements II. 2 What utility does a deal give an agent? Given encounter  T 1,T 2  in task domain  T,{1,2},c  We define the utility of a.
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
Test B, 100 Subtraction Facts
11 = This is the fact family. You say: 8+3=11 and 3+8=11
Week 1.
Number bonds to 10,
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
1 Unit 1 Kinematics Chapter 1 Day
PSSA Preparation.
Essential Cell Biology
Chapter 13: Digital Control Systems 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 13 Digital Control Systems.
How Cells Obtain Energy from Food
Energy Generation in Mitochondria and Chlorplasts
Chapter 30 Induction and Inductance In this chapter we will study the following topics: -Faraday’s law of induction -Lenz’s rule -Electric field induced.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Presentation transcript:

peer-to-peer and agent-based computing Basic Theory of Agency

2 Plan of next two lectures Motivation States and actions Runs State transformer functions Agents and systems Purely reactive agents Perception Agents with state Utilities Achievement and maintenance tasks Agent synthesis

3 An Abstract Agent Architecture We need a way to tie down the concept of an agent We present an abstract architecture to formalise the concepts of: –environmental state –actions and state transformations –agent decision making

4 Why not look at Java code? Answer: –A program is not the best way to communicate with humans about computations Code is verbose (i.e., lots of it!) and may contain a lot of unnecessary housekeeping: –Open sockets, parse XML, set variables/flags, loops,… Abstractions help us understand essential features

Let us assume that The environment is part of a finite set E of discrete, instantaneous states: E = {e 1, e 2, …} Agents have a repertoire of actions available to them, which transform the state of the environment: Ac = { 1, 2, …} 5 States and actions (1)

6 States and actions (2) Sample environments: –Readings from a thermostat E = {-10,-9,…,0,1,…,39,40} Sample actions: –Turning on/off heating (or leaving it alone) Ac = {on, off, nil}

A run r of an agent in an environment is a sequence of interleaved states and actions: r : e 0 e 1 e 2 e 3 … e n Let: – R be the set of all possible finite runs (over E and Ac) – R Ac be the subset of finite runs that end with an action – R E be the subset of finite runs that end with a state 7 Runs (1) 0 n

8 A sample run, using previous environment & actions: r : … -1 Sets: –R = {(10,off),(30,off,20),(-1,nil,10,on,12),…} –R Ac ={(10,off),(10,off,5,on),…} –R E = {(30,off,20),(35,off,10,nil,-2),…} Runs (2) on nil off nil nil

A state transformer function represents the behaviour of the environment: : R Ac (E ) –Environments: history-dependent & non-deterministic –If (r )=, then there are no possible successor states to r ; i.e. the system has ended its run. Formally, an environment consists of –A set of environment states E –The initial state e 0 –A transformer function Env = E,e 0, 9 State transformer functions (1)

10 Given R Ac ={(10,off),(10,off,5,on),…} and E = {-10,-9,…,0,1,…,39,40} We can define the following state transformer function ((10,off)) = {-10,…,10} ((10,off,5,on)) = {6,…,40} … A sample environment Env = {-10,…,0,…,40},0, State transformer functions (2)

An agent is a function mapping runs to actions: Ag : R E Ac –An agent decides which action to perform based on the history it has witnessed so far… Let AG = {Ag 1, Ag 2,…, Ag n } be the set of all agents in a multi-agent system. 11 Agents (1)

12 Given R E = {(30,off,20),(35,off,10,off,-2),…} we can define the following agent function: –Ag ((30,off,20)) = off –Ag ((35,off,10,nil,-2)) = on –… N.B.: there are compact ways to describe functions: –Ag ((…,on,x)) = off, if x 20 –Ag ((…,on,x)) = nil, if x < 20 –Ag ((…,off,x)) = on, if x < 20 –Ag ((…,nil,x)) = on, if x < 20 –Ag ((…,nil,x)) = nil, if x 20 –… Agents (2)

A system comprises a pair agent/environment: Ag, Env –Any system has a set of possible runs associated with it The set of runs of an agent in an environment is: R (Ag, Env) –Although the set of runs can be infinite, each run is finite –I.e., we do not consider (for the time being) infinite runs… 13 Systems (1)

14 A sample system: Ag, {-10,…,0,…,40},0, where –Ag (r ) = Ac (agent defd as a function) – (r ) = ({-10,…,0,…,40}) (state transformer function) A sample set of runs of an agent in an environment: R (Ag, {-10,…,40},0, ) = {(0,on,20,nil,15),…} Systems (2)

A sequence (e 0, 0, e 1, 1, e 2, …) represents a run of an agent Ag in an environment Env = E, e 0, if 15 Systems (3) 1. e 0 is the initial state of Env 2. 0 =Ag (e 0 ) ; and 3. for i > 0, e i ((e 0, 0,…, i -1 )) where i = Ag ((e 0, 0, …, e i ))

Two agents Ag 1 and Ag 2 are behaviourally equivalent with respect to environment Env if, and only if, R (Ag 1, Env) = R (Ag 2, Env) Two agents Ag 1 and Ag 2 are behaviourally equivalent if, and only if, they are behaviourally equivalent with respect to all environments Env. 16 Behavioural equivalence of agents

Some agents decide what to do without reference to their history: –Their decision-making is based entirely on the present –I.e., there is no reference whatsoever to the past! Such agents are called purely reactive: Ag : E Ac A thermostat is a purely reactive agent: Ag (e ) = off if e 20 Ag (e ) = on if e < Purely Reactive Agents

18 We can now introduce a perception system: –see : agents ability to observe the environment –action : agents decision making function Perception (1)

The output of the see function is a percept: see : E Per which maps environmental states to percepts action is now a function action : Per * Ac which maps sequences of percepts to actions Agents are considered from now on as the pair Ag = see, action 19 Perception (2)

20 Sample see functions: –Robot with an infrared sensor –Sofware agent performing commands such as ls or finger or retrieving a Web page –The output is stored in some data structure Sample action functions: –Move towards direction of source of heat –Delete all files with extension.jpg obtained via ls –Submit a Web form using the retrieved page Perception (3)

21 Suggested Reading An Introduction to Multi-Agent Systems, M. Wooldridge, John Wiley & Sons, Chapter 2.