Coupling Neutron Detector array (NEDA) with AGATA The AGATA Front-End processing Electronics & DAQ The AGATA Trigger and Synchronization (GTS) Coupling.

Slides:



Advertisements
Similar presentations
● EDAQ meetings ● NUSTAR DAQ architecture ● AGATA ancillary detector interface ● Data rates, etc. HISPEC/DESPEC Electronics & Data Acquisition Department.
Advertisements

ReA12 separator Chris Campbell July 12, 2014.
Advanced GAmma Tracking Array
TileCal Optical Multiplexer Board 9U VME Prototype Cristobal Cuenca Almenar IFIC (Universitat de Valencia-CSIC)
EXL/R3B Calorimeters- Readout from ASIC to DAQ Ian Lazarus STFC Daresbury Laboratory.
ESODAC Study for a new ESO Detector Array Controller.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Overview of the current TDR system Introduction Electronics for instrumentation TDR core : Metronome, ADC, Merge Data Handling Pete Jones, University of.
Prometeo Workshop (Valencia) November 17-18, 2011 A. Boujrad NUMEXO2 Mother Board Design Status Exogam Collaboration Abderrahman BOUJRAD GANIL France.
A Gigabit Ethernet Link Source Card Robert E. Blair, John W. Dawson, Gary Drake, David J. Francis*, William N. Haberichter, James L. Schlereth Argonne.
AGATA Introduction John Simpson Nuclear Physics Group.
Level-1 Topology Processor for Phase 0/1 - Hardware Studies and Plans - Uli Schäfer Johannes Gutenberg-Universität Mainz Uli Schäfer 1.
Coupling an array of Neutron detectors with AGATA The phases of AGATA The AGATA GTS and data acquisition.
EGAN FEE synergy Working Group PROMETEO Workshop on Front-End Electronics for gamma and complementary detector systems November 2011I IFIC – Valencia.
The AGATA project concept of  - ray tracking design and development Witek Męczyński The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy.
AGATA A. Gadea (IFIC, CSIC-Univ. Valencia) for the AGATA collaboration FEE Workshop November 17 th -18 th 2011 PROMETEO.
Trigger-less and reconfigurable data acquisition system for J-PET
K. Honscheid RT-2003 The BTeV Data Acquisition System RT-2003 May 22, 2002 Klaus Honscheid, OSU  The BTeV Challenge  The Project  Readout and Controls.
Gretina data flow and formats Chris Campbell LBL.
TID and TS J. William Gu Data Acquisition 1.Trigger distribution scheme 2.TID development 3.TID in test setup 4.TS development.
Trigger Supervisor (TS) J. William Gu Data Acquisition Group 1.TS position in the system 2.First prototype TS 3.TS functions 4.TS test status.
The GANDALF Multi-Channel Time-to-Digital Converter (TDC)  GANDALF module  TDC concepts  TDC implementation in the FPGA  measurements.
Napoli October 2007 WG3 - Pierre Edelbruck FAZIA WG3 – Front End Electronics.
Prototype Test of SPring-8 FADC Module Da-Shung Su Wen-Chen Chang 02/07/2002.
Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk Electronics for PARIS Searching for optimum solution Piotr Bednarczyk.
Hall A DAQ status and upgrade plans Alexandre Camsonne Hall A Jefferson Laboratory Hall A collaboration meeting June 10 th 2011.
SODA: Synchronization Of Data Acquisition I.Konorov  Requirements  Architecture  System components  Performance  Conclusions and outlook PANDA FE-DAQ.
M. Labiche - INTAG workshop GSI May Se - D prototype for the focal plane of the PRISMA spectrometer (Task4) Digitisers for SAGE & LISA (task1)
Ancillary Detectors Working Group Agata Week/GSI, 23 Feb Integration of ancillaries with DAQ Goal Context Specifications, modes Design Schedule &
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
NEDA collaboration meeting at IFIC Valencia, 3rd-5th November 2010 M. Tripon EXOGAM2 project Digital instrumentation of the EXOGAM detector EXOGAM2 - Overview.
G. Maron, Agata Week, Orsay, January Agata DAQ Layout Gaetano Maron INFN – Laboratori Nazionali di Legnaro.
Wolfram KORTEN, JRA-02 AGATAEURONS PCC-Meeting, Mainz (Germany), April 2006 Status of the AGATA project Recent developments Milestones and deliverables.
6-10 Oct 2002GREX 2002, Pisa D. Verkindt, LAPP 1 Virgo Data Acquisition D. Verkindt, LAPP DAQ Purpose DAQ Architecture Data Acquisition examples Connection.
Agata Week – LNL 14 November 2007 Global Readout System for the AGATA experiment M. Bellato a a INFN Sez. di Padova, Padova, Italy.
S. Brambilla, “Recent DAQ integration test at L.N.L May 2008” 7 th AGATA Week, Uppsala, 8-11 July th AGATA Week Uppsala, 8-11 July 2008 Recent.
A Front End and Readout System for PET Overview: –Requirements –Block Diagram –Details William W. Moses Lawrence Berkeley National Laboratory Department.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
CPT Week, April 2001Darin Acosta1 Status of the Next Generation CSC Track-Finder D.Acosta University of Florida.
Summary talk of Session 6 - Electronics and Interfacing to AD DAQ - Mechanics for the Demonstrator for the AD ancillary detector integration team: for.
Rome 4 Sep 04. Status of the Readout Electronics for the HMPID ALICE Jose C. DA SILVA ALICE.
COMPET Electronics and Readout
W.Skulski APS April/2003 Eight-Channel Digital Pulse Processor And Universal Trigger Module. Wojtek Skulski, Frank Wolfs University of Rochester.
ATLAS Trigger / current L1Calo Uli Schäfer 1 Jet/Energy module calo µ CTP L1.
Latest ideas in DAQ development for LHC B. Gorini - CERN 1.
AGATA: Status of the Implementation and Performance A. Gadea (IFIC, CSIC-Univ. Valencia) for the AGATA collaboration.
W.Skulski Phobos Workshop April /2003 Digital Pulse Processor DDC-8 (Universal Trigger Module) for PHOBOS. Wojtek Skulski University of Rochester.
Compton Trigger Design Update Tanja Horn Compton Working Group 6 June 2008.
DATA PROCESSING Working Group Digitisation P. Medina Pre-processing hardware I. Lazarus Pre-processing algorithms W. Gast Global Trigger and SynchronisationM.
Modeling PANDA TDAQ system Jacek Otwinowski Krzysztof Korcyl Radoslaw Trebacz Jagiellonian University - Krakow.
SoLiD/PVDIS DAQ Alexandre Camsonne. DAQ limitations Electronics Data transfer.
KLM Trigger Status Barrel KLM RPC Front-End Brandon Kunkler, Gerard Visser Belle II Trigger and Data Acquistion Workshop January 17, 2012.
Agata Week – LNL 14 November 2007 LLP ATCA Carrier Status M. Bellato on behalf of the LLP Carrier Working Group.
 Digitisation P.Medina  Pre-processing I.Lazarus GTSM.Bellato GTSM.Bellato  PSA P.Desesquelle R.Gernhäuser 7 th AGATA Week, Uppsala, July 8-11, 2008.
XLV INTERNATIONAL WINTER MEETING ON NUCLEAR PHYSICS Tiago Pérez II Physikalisches Institut For the PANDA collaboration FPGA Compute node for the PANDA.
NEDA collaboration meeting Neutron and light charged particle detector-arrays as complementary detectors for the future European large gamma-arrays AGATA,
1 Carleton/Montreal Electronics development J.-P Martin (Montreal) Shengli Liu & M. Dixit (Carleton) LC TPC Meeting DESY Hamburg, 4 June 2007.
Level-1 Trigger Commissioning Status A.Somov Jefferson Lab Collaboration Meeting, May 10, 2010.
CBM-TOF-FEE Jochen Frühauf, GSI Picosecond-TDC-Meeting.
CLAS12 Central Detector Meeting, Saclay, 3 Dec MVT Read-Out Architecture & MVT / SVT Integration Issues Irakli MANDJAVIDZE.
DAQ Selection Discussion DAQ Subgroup Phone Conference Christopher Crawford
Sergio Vergara Limon, Guy Fest, September Electronics for High Energy Physics Experiments.
Super BigBite DAQ & Trigger Jens-Ole Hansen Hall A Collaboration Meeting 16 December 2009.
Advanced Gamma Tracking Array Andy Boston The Advanced Gamma Tracking Array
Digital Acquisition: State of the Art and future prospects
DAQ ACQUISITION FOR THE dE/dX DETECTOR
Modeling event building architecture for the triggerless data acquisition system for PANDA experiment at the HESR facility at FAIR/GSI Krzysztof Korcyl.
Front-end electronic system for large area photomultipliers readout
Status of the Design & Development of the AGAVA interface module.
August 19th 2013 Alexandre Camsonne
Presentation transcript:

Coupling Neutron Detector array (NEDA) with AGATA The AGATA Front-End processing Electronics & DAQ The AGATA Trigger and Synchronization (GTS) Coupling complementary detectors to AGATA

6660 high-resolution digital electronics channels High throughput DAQ Pulse Shape Analysis  position sensitive operation mode  -ray tracking algorithms to achieve maximum efficiency Coupling to complementary detectors for added selectivity 180 hexagonal crystals3 shapes 60 triple-clusters all equal Inner radius (Ge) 23.5 cm Amount of germanium 362 kg Solid angle coverage 82 % 36-fold segmentation 6480 segments Singles rate ~50 kHz Efficiency: 43% (M  =1) 28% (M  =30) Peak/Total:58% (M  =1) 49% (M  =30) AGATA R&D AGATA R&D (Advanced GAmma Tracking Array)

Structure of Electronics and DAQ TRACKING Control, Storage… EVENT BUILDER PSA FARM Core + 36 seg. GL Trigger Clock 100 MHz T-Stamp Other detectors Fast 1 st Level Trigger interface to GTS, merge time-stamped data into event builder, prompt local trigger from digitisers Detector Level Other Detectors Diff. Fast-reset-TOT 75.5db SNR 12.2 ENOB GTS DIGITIZER PREAMPL. ATCA Carrier GTS Global Level DAQ-NARVAL RUN- & SLOW-Control HIGH THROUGHTPUT PRE-PROCESSING CARRIER / MEZZANINES Other detectors INFN-MI/GANIL/KÖLNIPHC/Liverpool/ STFC IPNO/CSNSM/INFN-Pd IPNO/CSNSM/ LNL/GANIL/IFJ-PAN INFN-Pd Digital preamplifier concept 200MB/s/ segment 100MB/s/ detector

DAQ General Overview Run Control and Monitor System Slow Control Event Builder Tracking Storage Pulse Shape Analysis Front-end electronic and pre-processing Data pre-processing and readout Front-end electronic Trigger Agata Data Flow Ancillary Data Flow DAQ main data flow NARVAL Run-Control based on GRID-CC Required components as data bases, slow control, etc..

AGATA and Other Detectors Other VME GTS supervisor Event Builder PSA Pre-processing Other Readout Digitizer Tracking Online analysis Storage GTS local Other Analogue prompt trigger REQ VAL REQ VAL Ancillary Merge Pre-processing AGAVA GTS interface Trigger AGAVA IFJ-PAN The first real interaction of AGATA with other detectors is at the level of the GTS Possibility to use the Digitizer multiplicity signal to build the ancillary detector trigger

The AGATA Trigger System Tree Structure Based on the GTS Mezzanines Trigger Logic Build in the Global Trigger Processor Possibility to Define Partitions for Different Detectors or Groups of Detectors The logic: Multiplicity conditions within each partition Prompt or Delay Logical Conditions Involving more partitions

M. Bellato, L. Berti, J. Chavas, INFN-Pd and LNL

T 90 I 101 T 94I 102T 100I 105I 110I 107 I 190I 194 I 200 Online Sequential Batcher Sort The GTS tree collects all time-stamped trigger request in a single list M. Bellato, L. Berti, J. Chavas, INFN-Pd and LNL

Multiplicity Processor T90 200ns T120 T135 T150 >= 3 T T M. Bellato, L. Berti, J. Chavas, INFN-Pd and LNL 1.Ordering the Trigger requests 2.Defining the events in the coincidence Window 3.Output of events in coincidence Window with event number

Partitions Coincidence Prompt and delayed Case study: –M(Ge) >= N and M(Ancillary) >= K before/after deltaT M. Bellato, L. Berti, J. Chavas, INFN-Pd and LNL

Open Issues –Multiple multiplicity conditions on the same partions: (M(Ge) >= N or M(Ge) >= R) and M(Ancillary) >= K before/after DT –Event number generation: Global ? per partition ? –Validation broadcast M. Bellato, L. Berti, J. Chavas, INFN-Pd and LNL This Trigger mode Is very relevant for NEDA: to be implemented in the final Global Trigger processor

AGAVA VME card GTS transceiver FPGA VIRTEX 2 VME backplane connector Optolink to GTS Ethernet IFJ-PAN, Kraków & INFN-Milano

Agava Interface Front Panel contains: Inputs: Trigger request (“external”) (NIM standard) Back pressure (NIM standard) Outputs: Busy (NIM standard) Local Trigger (NIM standard) Rejection Trigger (NIM standard) Validation Trigger (NIM standard) Timeout (NIM standard) Inspection_1 (NIM standard) Inspection_2 (NIM standard) Inspection_3 (NIM standard) Inspection_4 (NIM standard) Clock 100 MHz (LVDS) Metronome and Shark link connectors Ethernet and Optical Fiber Clock Access to the GTS Mezzanine card.

AGATA-Demonstrator PRISMA DAQ cycle (PRELIMINARY)

Coupling Complementary Detectors Trough AGAVA AGAVA is a Complete Interface Towards the AGATA Global Trigger System Provides the Trigger Request – Validation Cycle (with GTS Trigger Latency Provides de Backpresure and Busy signals Provides the Time-Stamp and Event-Number But: GTS concept does not include “Multiplicity” information from a single node or any Other “Qualifying” Information. No information Except the Topological (Partition) and Time is delivered to the Global Trigger System. If Neutron Multiplicity to be considered in a complex trigger scheme a GTS mezzanine per channel is required High costs for a system with individual GTS Mezzanines

Outlook: NEDA as well as the present n-wall have large  -ray counting rates not compatible with a selective trigger A full digital system requires processing capability to discriminate between  -ray and neutrons and within a well defined time. The Digitizer or processing modules need an neutron-trigger output to be use as input in AGAVA. If processing capability on Digitizers, large FPGAs should be on-board. It is not very common in commercial FADC (example, CAEN Cyclone low performance FPGAs, Struck Virtex 4 FX-20). If not a single GTS per channel, the neutron multiplicity has to be defined in the local electronics, no possibility to define dynamic trigger conditions (M  =1 & Mn=2.OR. M  =2 & Mn=1)