2006/12/06Chen Yi-Chun1 Mining Positive and Negative Association Rules: An Approach for Confined Rules Maria-Luiza Antonie, Osmar R. Zaiane PKDD2004.

Slides:



Advertisements
Similar presentations
Salvatore Ruggieri SIGKDD2010 Frequent Regular Itemset Mining 2010/9/2 1.
Advertisements

Huffman Codes and Asssociation Rules (II) Prof. Sin-Min Lee Department of Computer Science.
Data Mining Techniques Association Rule
Association rules The goal of mining association rules is to generate all possible rules that exceed some minimum user-specified support and confidence.
1 Mining Relationships Among Interval-based Events for Classification Dhaval Patel 、 Wynne Hsu Mong 、 Li Lee SIGMOD 08.
Efficient Mining of Both Positive and Negative Association Rules Xindong Wu (*), Chengqi Zhang (+), and Shichao Zhang (+) (*) University of Vermont, USA.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
密碼學與網路安全 第4章 有限體.
Reference, primitive, call by XXX 必也正名乎 誌謝 : 部份文字取於前輩 TAHO 的文章.
矩陣乘法 實作矩陣乘法 利用 threads 來加速運算速度 – Matrix1 row x Matrix2 column = Ans (x,y) Matrix 1Matrix 2Answer.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
Data Mining Association Analysis: Basic Concepts and Algorithms
: Factstone Benchmark ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: : Factstone Benchmark 解題者:鐘緯駿 解題日期: 2006 年 06 月 06 日 題意: 假設 1960.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
JAVA 程式設計與資料結構 第十四章 Linked List. Introduction Linked List 的結構就是將物件排成一列, 有點像是 Array ,但是我們卻無法直接經 由 index 得到其中的物件 在 Linked List 中,每一個點我們稱之為 node ,第一個 node.
Lecture Note of 9/29 jinnjy. Outline Remark of “Central Concepts of Automata Theory” (Page 1 of handout) The properties of DFA, NFA,  -NFA.
8.1 何謂高度平衡二元搜尋樹 8.2 高度平衡二元搜尋樹的加入 8.3 高度平衡二元搜尋樹的刪除
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
Failure Candidate Identification for Silicon Debug 指導教授:林榮彬 教授 李婉如 許智涵.
Introduction to Java Programming Lecture 5: Using Java Classes : String & Math Spring 2009.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
: Point of View in Flatland ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 11037: Point of View in Flatland 解題者:黃士庭 解題日期: 2007 年 5 月 15 日 題意:在座標平面上給三個圓,找一個點使從這.
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
Digital Signal Processing with Examples in M ATLAB ® Chap 1 Introduction Ming-Hong Shih, Aug 25, 2003.
Monte Carlo Simulation Part.1 Dept. Phys., Tunghai Univ. Numerical Methods, C. T. Shih.
: Playing War ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11061: Playing War 解題者:陳盈村 解題日期: 2008 年 3 月 14 日 題意:在此遊戲中,有一類玩家一旦開始攻擊, 就會不停攻擊同一對手,直到全滅對方或無法再.
短缺,盈餘與均衡. 遊戲規則  老師想出售一些學生喜歡的小食。  老師首先講出價錢,有興趣買的請舉手。
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
: Beautiful Numbers ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11472: Beautiful Numbers 解題者:邱經達 解題日期: 2011 年 5 月 5 日 題意: 若一個 N 進位的數用到該.
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
-Antidifferentiation- Chapter 6 朝陽科技大學 資訊管理系 李麗華 教授.
Association Rule Mining - MaxMiner. Mining Association Rules in Large Databases  Association rule mining  Algorithms Apriori and FP-Growth  Max and.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 10 m-way 搜尋樹與B-Tree
Data Mining: A Closer Look Chapter Data Mining Strategies.
中序轉後序 藉由由左向右掃瞄中序運算式產生後序運算式,遇到 運算元就直接輸出,遇到運算符號則先存入堆疊,將 優先權較高者輸出。 範例: a + b * c TokenStack [0] [1] [2] topoutput aa ++0a b+0ab *+ *1ab c+ *1abc eosabc*+
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
:Stupid Sequence ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 11319: Stupid Sequence 解題者:李育賢 解題日期: 2008 年 11 月 23 日 題意: 一個公式 f(x)=a 0 +a 1 x+a.
: Wine trading in Gergovia ★★☆☆☆ 題組: Contest Volumes with Online Judge 題號: 11054: Wine trading in Gergovia 解題者:劉洙愷 解題日期: 2008 年 2 月 29 日 題意:在 Gergovia.
1 Introduction to Java Programming Lecture 3 Mathematical Operators Spring 2008.
Association Rule Mining. Mining Association Rules in Large Databases  Association rule mining  Algorithms Apriori and FP-Growth  Max and closed patterns.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
著作權所有 © 旗標出版股份有限公司 第 14 章 製作信封、標籤. 本章提要 製作單一信封 製作單一郵寄標籤.
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
Association Rules. CS583, Bing Liu, UIC 2 Association rule mining Proposed by Agrawal et al in Initially used for Market Basket Analysis to find.
Apriori Algorithms Feapres Project. Outline 1.Association Rules Overview 2.Apriori Overview – Apriori Advantage and Disadvantage 3.Apriori Algorithms.
2010/05/061 Author: Monga, O.; Deriche, R.; Malandain, G.; Cocquerez, J.P. Source: Pattern Recognition, Proceedings., 10th International Conference,
©2010 Cengage Learning CHAPTER 3 BOOLEAN ALGEBRA (continued) 3.1Multiplying Out and Factoring Expressions 3.2Exclusive-OR and Equivalence Operations 3.3The.
Introduction to DNA Computing Introducer: 黃宏偉 Adviser: 楊昌彪 教授.
CSE4334/5334 DATA MINING CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai.
1/24 Novel algorithm for mining high utility itemsets Shankar, S. Purusothaman, T. Jayanthi, S. International Conference on Computing, Communication and.
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Data Mining: Association Analysis This lecture node is modified based on Lecture Notes for.
Multidimensional Scaling(MDS) Breakfast Food Perceptual Map.
Data Mining Association Rules Mining Frequent Itemset Mining Support and Confidence Apriori Approach.
Reducing Number of Candidates
Frequent Pattern Mining
Chang-Hung Lee, Jian Chih Ou, and Ming Syan Chen, Proc
Dynamic Itemset Counting
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Data Mining Association Analysis: Basic Concepts and Algorithms
Fractional Factorial Design
AB AC AD AE AF 5 ways If you used AB, then, there would be 4 remaining ODD vertices (C, D, E and F) CD CE CF 3 ways If you used CD, then, there.
Exploring Partially ordered sets
Design matrix Run A B C D E
Presentation transcript:

2006/12/06Chen Yi-Chun1 Mining Positive and Negative Association Rules: An Approach for Confined Rules Maria-Luiza Antonie, Osmar R. Zaiane PKDD2004

2006/12/06Chen Yi-Chun2 Outline Motivation –Negative association rule –Correlation coefficient Our algorithm Others’ algorithms Compare Conclusion

2006/12/06Chen Yi-Chun3 Positive vs Negative Positive association rules –Typical association rule Negative association rules –Identify products that conflict with each other “customers that buy Coke do not buy Pepsi” –Identify products that complement each other “ 如果 Coke 賣完, 就改買 Pepsi”

2006/12/06Chen Yi-Chun4 Example “non-organic organic” has 20% support and 25% confidence “ organic non-organic” has 20% support and 50% confidence Organic Non-organic non-organic % confidence

2006/12/06Chen Yi-Chun5 Correlation Coefficient Correlation coefficient: = 0 : X and Y are independent. =+1: X and Y are perfectly positive correlated. =-1: X and Y are perfectly negative correlated. Let X and Y be two binary variables. – correlation coefficient: –Transform: Y Y X X N

2006/12/06Chen Yi-Chun6 Summary The correlation coefficient between these two items is –They are negatively correlated. –So the rule “ organic non-organic” is misleading

2006/12/06Chen Yi-Chun7 Negative Association Rules Generalized negative association rule is a rule containing a negation of an item –e.g. : Confined negative association rules

2006/12/06Chen Yi-Chun8 Correlation Coefficient (cont.) Cohen discusses about the correlation coefficient’s strength – is large – is moderate – is small Then we introduce an automatic progressive thresholding process –This eliminates the need for manually adjusted thresholds.

2006/12/06Chen Yi-Chun9 Our Algo. Automatic progressive thresholding process. 1.We start by setting our correlation threshold to If no strong correlated rules are found the threshold slides progressively to 0.4, Until some rules are found with moderate correlations

2006/12/06Chen Yi-Chun10 Others’ algo. [WZZ02] –Set a parameter “mininterest” – if mininterest That is interest. [THC02] SRM( substitution rule mining) –Only discuss one negative rule – 利用 -square value 和 support value 找出 concrete items – 再利用 correlation coefficient 找出其 rule

2006/12/06Chen Yi-Chun11 Example TIDItems 1A,C,D 2B,C 3C 4A,B,F 5A,C,D 6E 7B,F 8B,C,F 9A,B,E 10A,D TIDItemsEquivalent bit vector 1A, B,C,D, E, F(101100) 2 A,B,C, D, E, F(011000) 3 A, B,C, D, E, F(001000) 4A,B, C, D, E,F(110001) 5A, B,C,D, E, F(101100) 6 A, B, C, D,E, F(000010) 7 A,B, C, D, E,F(010001) 8 A,B,C, D, E,F(011001) 9A,B, C, D,E, F(110010) 10A, B, C,D, E, F(100100)

2006/12/06Chen Yi-Chun12 min. sup. = 0.2 correlation coefficient = 0.5 min. interest = 0.07 TI D Items 1A,C,D 2B,C 3C 4A,B,F 5A,C,D 6E 7B,F 8B,C,F 9A,B,E 10A,D OurInt.SRM ACD BD CE DF ABC ABD BCD Our Int. SRM AD BF 2-Itemsets 3-Itemsets 1.A: 5 B:5 C:5 D:3 E:2 F:3 2. 找出 candidate : AB, AC, AD, BC, BF, CD 3. 把彼此的 correlation 算出來若 又 其 則 XY 為 positive rule 4. 例 : A A D303 D 若 又其 2. 則 Negative rule 會產生 3. 或是若 則會產生 4. 例 : BB D033 D The itemset DF has a minimum interest of , but it has a correlation of only 因為在 SRM 中其 correlation coefficient 必定要大於 minimum value, 而我們的方法只要大於等 於 minimum value 就好, 而 CE 的 correlation 剛好是 0.5

2006/12/06Chen Yi-Chun13 Experimental Results

2006/12/06Chen Yi-Chun14 Conclusion Too many association rules are generated but not always useful on marketing.