1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP 2007. 12.14-15 1.Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)

Slides:



Advertisements
Similar presentations
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Advertisements

微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
8 He における ダイニュートロン形成と崩 れ 2013/7/27 RCNP 研究会「核子・ハイペロン多体系におけるクラスター現象」 1 Department of Physics, Kyoto University Fumiharu Kobayashi Yoshiko Kanada-En’yo arXiv:
Dineutron formation and breaking in 8 He th Sep. The 22nd European Conference on Few-Body Problems in Physics 1 Department of Physics, Kyoto University.
KEK SRC Workshop Sept 25, 2009 KEK Theory Center Workshop on Short-range Correlations and Tensor Structure at J-PARC September 25, 2009 Search for Direct.
Unified Description of Bound and Unbound States -- Resolution of Identity -- K. Kato Hokkaido University Oct. 6, 2010 KEK Lecture (2)
理研.08 少数体系アプローチの研究と今後の課題 Few-Body Approach and Future Problems ・ NN interaction is characterized by strong short-range repulsion and long-range tensor.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
モンテカルロ殻模型による ベリリウム同位体の密度分布 T. Yoshida (a), N. Shimizu (a), T. Abe (b) and T. Otsuka (a, b) Center for Nuclear Study (a) and Department of Physics (b),
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
FB181 Dynamics of Macroscopic and Microscopic Three-Body Systems Outline Three-body systems of composite particles (clusters) Macroscopic = Use of fewer.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
10,12 Be におけるモノポール遷移 Makoto Ito 1 and K. Ikeda 2 1 Department of Pure and Applied Physics, Kansai University I. 導入:研究の大域的目的とこれまでの研究成果 II. 今回の目的:モノポール遷移への興味.
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Coulomb Breakup and Pairing Excitation of Two-Neutron Halo Nucleus 11 Li Niigata University S. Aoyama RCNPT. Myo Hokkaido UniveristyK. Kato RikenK. Ikeda.
Yudai Ichikawa (Kyoto University/JAEA) 2013/07/26 RCNP 研究究会「核子・ハイペロン多体系におけるクラスター現 象」 1 J-PARC における d(π +, K + ) 反応を 用いた K 中間子原子核の探索.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Cluster-Orbital Shell Model と Gamow Shell Model Hiroshi MASUI Kitami Institute of Technology Aug. 1-3, 2006, KEK 研究会 「現代の原子核物理 ー多様化し進化する原子核の描像ー」
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
Pairing Correlation in neutron-rich nuclei
Description of nuclear structures in light nuclei with Brueckner-AMD
The Strong Force: NN Interaction
Nuclear structure calculations with realistic nuclear forces
Resonance and continuum in atomic nuclei
Tensor optimized shell model and role of pion in finite nuclei
Yokohama National University Takenori Furumoto
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Kernfysica: quarks, nucleonen en kernen
Pions in nuclei and tensor force
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Ab-initio nuclear structure calculations with MBPT and BHF
Osaka Institute of Technology
Presentation transcript:

1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM) 2.Short-range correlation by Unitary Correlation Operator Method (UCOM) 3.TOSM + UCOM with bare interaction 明 孝之 大阪大学 RC NP

2 Motivation (tensor force) Spectroscopy of neutron-rich nuclei : He and Li isotopes Tensor force (V tensor ) plays a significant role in the nuclear structure. –In 4 He, – ~ 80% (GFMC) R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, PRC62(2001) We would like to understand the role of V tensor in the nuclear structure by describing tensor correlation explicitly. model wave function (shell model and cluster model). spatial properties, p-h correlation, …

3 Variational calculation in real space C.Pieper, R.B.Wiringa, Annu.Rev.Nucl.Part.Sci.51(2001) R.B.Wilinga,S.C.Pieper,J.Carlson, V.R.Pandaripande, PRC62(2000)  -  structure Green’s function Monte Calro mass  12

4 Tensor correlation in the shell model type approach. Configuration mixing within 2p2h excitations with high-L orbit TM et al., PTP113(2005) TM et al., PTP117(2007) T.Terasawa, PTP22(’59)) Length parameters such as are determined independently and variationally. –Describe high momentum component from V tensor CPP-HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) CPP-RMF by Ogawa et al.(PRC73), CPP-AMD by Dote et al.(PTP115) Tensor-optimized shell model (TOSM) 4 He

5 Hamiltonian and variational equations Effective interaction : Akaishi force (NPA738) –G-matrix from AV8’ with k Q =2.8 fm -1 –Long and intermediate ranges of V tensor survive. –Adjust V central to reproduce B.E. and radius of 4 He TM, Sugimoto, Kato, Toki, Ikeda PTP117(’07)257

6 4 He in TOSM Orbitb particle /b hole 0p 1/ p 3/ s 1/ d 3/ d 5/ f 5/ f 7/ Length parameters good convergence Higher shell effect L max Shrink

7 Pion exchange interaction vs. V tensor Delta interaction Yukawa interaction Involve large momentum Tensor operator - V tensor produces the high momentum component.

8 4 He in TOSM (0s 1/2 ) % (0s 1/2 ) 2 JT (0p 1/2 ) 2 JT JT= JT= (0s 1/2 ) 2 10 (1s 1/2 )(0d 3/2 ) (0s 1/2 ) 2 10 (0p 3/2 )(0f 5/2 ) P[D] 9.6 Energy (MeV)  28.0   of pion nature. deuteron correlation with (J,T)=(1,0) 4 Gaussians instead of HO c.m. excitation = 0.6 MeV Cf. R.Schiavilla et al. (GFMC) PRL98(’07)132501

9 LS splitting in 5 He with tensor corr. Orthogonarity Condition Model (OCM) is applied. T. Terasawa,PTP22(’59) S. Nagata, T. Sasakawa, T. Sawada R. Tamagaki, PTP22(’59) K. Ando, H. Bando PTP66(’81) TM, K.Kato, K.Ikeda PTP113(’05)

10 Phase shifts of 4 He-n scattering

11 Tensor correlation in 6 He Ground stateExcited state

12 Theory With Tensor 6 He in coupled 4 He+n+n model (0p 3/2 ) 2 can be described in Naive 4 He+n+n model (0p 1/2 ) 2 loses the energy Tensor suppression in 0 + 2

13 Characteristics of Li-isotopes Breaking of magicity N= Li, Be 11 Li … (1s) 2 ~ 50%. (Expt by Simon et al.,PRL83) Mechanism is unclear Halo structure 11 Li

14 Pairing-blocking : K.Kato,T.Yamada,K.Ikeda,PTP101(‘99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

15 11 Li in coupled 9 Li+n+n model System is solved based on RGM Orthogonality Condition Model (OCM) is applied. TOSM

16 11 Li G.S. properties (S 2n =0.31 MeV) Tensor +Pairing Simon et al. P(s 2 ) RmRm TM, K.Kato, H.Toki, K.Ikeda, PRC76(’07) TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, sumitted to JPG

17 G Tensor +Pairing Charge Radii of Li isotopes R C-2n Inert core Expt. (Sanchez et al., PRL96(2006)) 9 Li 11 Li Charge Radius 9 Li R C-2n [fm] P(s 2 )447%

18 Coulomb breakup strength of 11 Li E1 strength by using the Green’s function method +Complex scaling method +Equivalent photon method (TM, Aoyama, Kato, Ikeda, PRC63(’01)054313) Expt: T. Nakamura et al., PRL96,252502(2006) Energy resolution with =0.17 MeV. No three-body resonance

19 Tensor & Short-range correlations Tensor correlation in TOSM – –2p2h mixing optimizing the particle states (radial & high-L) H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 T. Neff, H. Feldmeier NPA713(2003)311 Short-range correlation –Short-range repulsion of the bare NN force in the relative wave function of nuclei –Unitary Correlation Operator Method (UCOM)

20 Unitary Correlation Operator Method H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 short-range correlator Bare Hamiltonian Shift operator depending on the relative distance r

21 Short-range correlator : C 1GeV repulsion Original  r 2 CC

22 4 He in UCOM (Afnan-Tang) CC

23 Charge form factor and Corr. Func. (0s) 4 CC 1E1E Form Factor

24 4 He in TOSM+UCOM R. Roth et. al, PRC72(2005) (Kamada et al. PRC64) Central+ LS+Tensor

25 Summary Tensor correlation in nuclei –Tensor-optimized shell model (TOSM) –He isotopes, Li isotopes Short-range correlation –Unitary Correlation Operator Method (UCOM) In TOSM+UCOM, we can study the nuclear structure starting from the bare interaction –Spectroscopy of light nuclei (p-shell region)

26 4 He in TOSM+UCOM (0s 1/2 ) % (0s 1/2 ) 2 JT (0p 1/2 ) 2 JT JT= % JT= (0s 1/2 ) 2 10 (1s 1/2 )(0d 3/2 ) (0s 1/2 ) 2 10 (0p 3/2 )(0f 5/2 ) P[D] of pion nature deuteron corr. with (J,T)=(1,0) c.m. excitation = 0.4 MeV V nn : AV8’

27 Properties of 4 He TOSM+UCOMBenchmark Energy Kinetic Central Tensor LS Radius1.51 fm1.49 fm (Kamada et al. PRC64)

28 Property of the tensor force Centrifugal potential pushes away the L=2 wave function.

29 Form of R + in UCOM Functional form given by referring to the Deuteron’s exact case Afnan-Tang : central only about 1GeV repulsion 1E1E Original CC

30 16 O with UCOM (Afnan-Tang) CC

31 6 He with 4 He+n+n model Pairing correlation is important S.Aoyama, S. Mukai,K.Kato, K. Ikeda, PTP93(1995)99. V V+T K.Ikeda, NPA538(1992)355

32 G Q-moment of Li-isotopes R C-2n 9 Li 2n~0 + Varga et. al Kanada-En’yo Vanish due to 0 + state of 2n