Spectral taxonomy: A semi-automated combination of chirped- pulse and cavity Fourier transform microwave spectroscopy Kyle N. Crabtree, Marie A. Martin-Drumel,

Slides:



Advertisements
Similar presentations
Techniques for High-Bandwidth (> 30 GHz) Chirped-Pulse Millimeter/Submillimeter Spectroscopy Justin L. Neill, Amanda L. Steber, Brent J. Harris, Brooks.
Advertisements

Progress Towards Obtaining Lineshape Parameters Using Chirped Pulse THz Spectroscopy Eyal Gerecht, Kevin O. Douglass, David F. Plusquellic National Institute.
CHIRPED-PULSE TERAHERTZ SPECTROSCOPY FOR BROADBAND TRACE GAS SENSING
OXYGEN-18 STUDIES OF HOCO AND HONO FORMATION Oscar Martinez Jr. and Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics School of Engineering.
Gas Analysis by Fourier Transform Millimeter Wave Spectroscopy Brent J. Harris, Amanda L. Steber, Kevin K. Lehmann, and Brooks H. Pate Department of Chemistry.
Laboratory and Possible Interstellar Detection of trans-Methyl Formate MATT T. MUCKLE, JUSTIN L. NEILL, DANIEL P. ZALESKI, and BROOKS H. PATE University.
Jason J. Pajski, Matt Logan, Brian C. Dian 1, Gordon G. Brown, Kevin O. Douglass, Richard D. Suenram and Brooks H. Pate Department of Chemistry, University.
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Molecular Spectroscopy Symposium
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
NMR Nuclear Magnetic Resonance. 1 H, 13 C, 15 N, 19 F, 31 P.
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
A Segmented Chirped-Pulse Fourier Transform Millimeter Wave Spectrometer ( GHz) with Real-time Signal Averaging Capability Brent J. Harris, Amanda.
Electron Spin Resonance Spectroscopy ESR / EPR
Electron Spin Resonance Spectroscopy
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
Waveguide Chirped-Pulse FTMW Spectroscopy Steven T. Shipman, 1 Justin L. Neill, 1 Brett Kroncke, 1 Brooks H. Pate, 1 and P. Groner 2 1 University of Virginia.
DELIVERING MICROWAVE SPECTROSCOPY TO THE MASSES: A DESIGN OF A LOW-COST MICROWAVE SPECTROMETER OPERATING IN THE GHZ FREQUENCY RANGE Amanda L. Steber.
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Microwave Spectroscopy of Seven Conformers of 1,2-Propanediol Justin L. Neill, Matt T. Muckle, and Brooks H. Pate, Department of Chemistry, University.
IR/THz Double Resonance Spectroscopy in the Pressure Broadened Regime: A Path Towards Atmospheric Gas Sensing Sree H. Srikantaiah Dane J. Phillips Frank.
Spectroscopy with comb-referenced diode lasers
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Chirped-Pulse Fourier Transform mm-Wave Spectroscopy from GHz Brent J. Harris, Amanda L. Steber, Justin L. Neill *, Brooks H. Pate University of.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
ULTRAVIOLET - CHIRPED PULSE FOURIER TRANSFORM MICROWAVE (UV-CPFTMW) DOUBLE-RESONANCE SPECTROSCOPY Brian C. Dian, Kevin O. Douglass, Gordon G. Brown, Jason.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall University of Illinois at Urbana-Champaign.
ROTATIONAL SPECTRA OF THE N 2 OH + AND CH 2 CHCNH + MOLECULAR IONS Oscar Martinez Jr. Valerio Lattanzi Michael C. McCarthy Harvard-Smithsonian Center for.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
CALIFORNIA INSTITUTE OF TECHNOLOGY 68th International Symposium on Molecular Spectroscopy - June 19, 2013 A LOW-COST CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
TALKING DIRECTLY TO RYDBERG STATES Yan Zhou, David Grimes, Ethen Klein, Timothy Barnum, Robert Field laser mmW.
The Simplest Criegee Intermediate: (CH2OO): Equilibrium Structure and Possible Formation from Atmospheric Lightning Michael McCarthy, Kyle Crabtree, Oscar.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
The Infrared Spectrum of CH 5 + Revisited Kyle N. Crabtree, James N. Hodges, and Benjamin J. McCall.
The Rotational Spectrum of N-Acetyl Phenylalanine Methyl Ester Measured with a Medium Bandwidth (100 MHz) Chirped-Pulse Fourier Transform Microwave Spectrometer.
A Joint Theoretical and Experimental Study of the SiO 2 H 2 Isomeric System Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics Jürgen Gauss.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
International Symposium on Molecular Spectroscopy// June 26, 2015
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
1. What is an NMR Spectrum ? 2. What are the Spectral Features? 3. What are the Spectral Parameters? 4. How much should be known about the NMR Phenomena.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Extending the principles of the Flygare: Towards a FT-THz spectrometer Rogier Braakman Chemistry & Chemical Engineering California Institute of Technology.
Terahertz spectroscopy of deuterated methylene bi-radicals, CHD and CD 2 Stéphane Bailleux June 25, 2015 – 70 th ISMS.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Digital Control System for Microwave Spectroscopy Data Collection Amanda Olmut Dr. Stephen Kukolich, Principle Investigator Dr. Adam Daly, Project Lead.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
Spectroscopy of (He) N -Molecule Clusters: Tracing the Onset of Superfluidity Yunjie Xu and Wolfgang Jäger Department of Chemistry, University of Alberta,
ISMS 2017 at CHAMPAIGN-URBANA, ILLINOIS
AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL
(Instrument part) Thanundon Kongnok M
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
THE STRUCTURE OF PHENYLGLYCINOL
NMR Nuclear Magnetic Resonance Dr. A.G. Nikalje
Presentation transcript:

Spectral taxonomy: A semi-automated combination of chirped- pulse and cavity Fourier transform microwave spectroscopy Kyle N. Crabtree, Marie A. Martin-Drumel, and Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics

Microwave spectroscopy at the CfA Microwave spectroscopy of reactive molecules : astrochemistry, atmospheric chemistry, and exotic species  200 molecules detected in 20 years Cations : HNNO + / NNOH +, H 2 NCO + Anions : C 4 H -, C 6 H -, C 8 H - Radicals : HOCO, HO 3, C 4 H, HC 3 O Exotic : Si 3, HOON, CH 2 OO, HOCOH

Cavity FTM spectrometer  Fourier transform spectrometer (5-26 GHz, 1 MHz bandwidth )  Supersonic expansion discharge nozzle  High sensitivity, high resolution Dilute gaseous precursors - HV

CP-FTMW spectrometer 20 GHz, 50 GS / s scope 24 GS / s AWG +38 dB +30 dB GHz PLDRO 10 MHz Rb Standard LP Filter GHz ; 4  sec duration Step Atten 0-70 dB 10 pulses ;  20  s t =0 t  250  s Real - time phase scoring and correction >1 M co - averages routine Linux DAQ software GHz 200 W GHz TWTA Data Validity Monitor Eccosorb −30 dB

Opportunities and goals  Chemical profiling of reactive gas mixtures with intermediates ( Miller - Urey - like experiments )  Conformer, vibrational - state discrimination  Analysis challenges for U - lines : Combine CP and cavity FT spectroscopy Illustration by Adrian J. Hunter, CC - BY - SA 3.0

Example: C 2 H 2 + CS 2 discharge 150 k gas pulses, 1.5 M chirps : ~ Hz 1% C 2 H 2, 1% C 2 S, 98% Ne 1 kV discharge

Example: C 2 H 2 + CS 2 discharge  495 features with SNR > 3  Of the strongest 34 features ( SNR > 50):  13 artifacts ( LO ; harmonics ; scope spurs )  10 assigned ( C 3 S, c - C 3 H 2, SO 2, HC 3 S, C 5 S, H 2 C 3 S, C 2 S )  11 unidentified 150 k gas pulses, 1.5 M chirps : ~ Hz 1% C 2 H 2, 1% C 2 S, 98% Ne 1 kV discharge

Chirped-pulse vs. cavity Chirped - pulse 8.5 h

Chirped-pulse vs. cavity Chirped - pulse Cavity 8.5 h 11 h

Chirped-pulse vs. cavity Chirped - pulse Cavity 8.5 h 11 h 8.5 h 9 s ( h )

Chirped-pulse vs. cavity Chirped - pulse Cavity 8.5 h 11 h 8.5 h 9 s ( h )  Bandwidth  Intensity accuracy  Resolution  Frequency accuracy  Sensitivity  Bandwidth  Intensity accuracy  Resolution  Frequency accuracy  Sensitivity

Chirped-pulse + cavity Chirped - pulse Cavity

Chirped-pulse + cavity Chirped - pulse Cavity

Chirped-pulse + cavity Chirped - pulse Cavity

Automated analysis with cavity QtFTM : Cavity control software designed for programmatic, automated acquisition

Automated analysis with cavity

 Import list of frequencies from CP spectrum  Automatically tune cavity to each frequency  Integrate for a duration based on CP intensity  Determine how many lines are present, fit to instrument response function  Remeasure under different conditions ( e. g. discharge turned off )

 For each line found in CP spectrum, determine if line disappears when conditions change ; classify : Taxonometric classification Discharge Magnetic field Gas 2 present Gas 1 present Buffer gas impurities Gas A cmplx or impurity Gas B cmplx or impurity Closed - shell intermed / prod Open - shell I / P

Example acquisition: Discharge test Discharge enabled Discharge disabled

Example acquisition: Discharge test

DC

Taxonomy flowchart Yes No YesNoYesNo YNNYYNYN YNYNYNYNYNYNYNYN Detected in cavity ? Discharge ? Magnetic ? CS 2 only ? C 2 H 2 only ?

Taxonomy flowchart Yes No YesNoYesNo YNNYYNYN YNYNYNYNYNYNYNYN Detected in cavity ? Discharge ? Magnetic ? CS 2 only ? C 2 H 2 only ? Non - detections : 330/495 ( past expt : 20%)

Taxonometric classification Discharge Magnetic field C 2 H 2 present CS 2 present

Taxonometric classification Discharge Magnetic field C 2 H 2 present CS 2 present Next step : cross - correlation within groups using double resonance

MW-MW double resonance f FTM J = 0 J = 2 J = 1 f FTM

MW-MW double resonance f DR f FTM J = 0 J = 2 J = 1 f FTM f DR

MW-MW double resonance f DR f FTM J = 0 J = 2 J = 1 f FTM f DR

MW-MW double resonance f DR f FTM J = 0 J = 2 J = 1 f FTM f DR

DR cross correlation Discharge Magnetic field C 2 H 2 present CS 2 present For each line, look for DR link at every other ( unique ) frequency # scans  N lines 2 /2

DR cross correlation – C 2 H 2 magnetic

No DR

DR cross correlation – C 2 H 2 magnetic Link !

DR cross correlation – C 2 H 2 magnetic 8/17 lines : c - C 3 H 2 Remainder : unassigned. No obvious linkages

DR cross correlation – C 2 H 2 magnetic 8/17 lines : c - C 3 H 2 Remainder : unassigned. No obvious linkages

DR cross correlation Discharge Magnetic field C 2 H 2 present CS 2 present Only the 60 strongest lines are shown in this example

DR cross correlation – CS 2 + C 2 H 2 discharge 4: C 5 S 4: C 4 S 2: C 3 S 5 =1 2: C 13 CCS Remainder : unassigned. Some linkages are likely unassigned vibrational states of molecules above

DR cross correlation – CS 2 + C 2 H 2 discharge 4: C 5 S 4: C 4 S 2: C 3 S 5 =1 2: C 13 CCS Remainder : unassigned. Some linkages are likely unassigned vibrational states of molecules above

Spectral taxonomy Future : 2-26 GHz CP coverage