Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris Joint work with Phil Torr, Daphne Koller.

Slides:



Advertisements
Similar presentations
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Advertisements

MAP Estimation Algorithms in
Mean-Field Theory and Its Applications In Computer Vision1 1.
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London Tutorial at GDR (Optimisation Discrète, Graph Cuts.
Bayesian Belief Propagation
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.
Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman.
Solving Markov Random Fields using Dynamic Graph Cuts & Second Order Cone Programming Relaxations M. Pawan Kumar, Pushmeet Kohli Philip Torr.
HOPS: Efficient Region Labeling using Higher Order Proxy Neighborhoods Albert Y. C. Chen 1, Jason J. Corso 1, and Le Wang 2 1 Dept. of Computer Science.
Focused Inference with Local Primal-Dual Gaps
Linear Time Methods for Propagating Beliefs Min Convolution, Distance Transforms and Box Sums Daniel Huttenlocher Computer Science Department December,
Graph Cut Algorithms for Computer Vision & Medical Imaging Ramin Zabih Computer Science & Radiology Cornell University Joint work with Y. Boykov, V. Kolmogorov,
Learning with Inference for Discrete Graphical Models Nikos Komodakis Pawan Kumar Nikos Paragios Ramin Zabih (presenter)
ICCV 2007 tutorial Part III Message-passing algorithms for energy minimization Vladimir Kolmogorov University College London.
The University of Ontario CS 4487/9687 Algorithms for Image Analysis Multi-Label Image Analysis Problems.
An Analysis of Convex Relaxations (PART I) Minimizing Higher Order Energy Functions (PART 2) Philip Torr Work in collaboration with: Pushmeet Kohli, Srikumar.
Discrete Optimization for Vision and Learning. Who? How? M. Pawan Kumar Associate Professor Ecole Centrale Paris Nikos Komodakis Associate Professor Ecole.
Learning with Inference for Discrete Graphical Models Nikos Komodakis Pawan Kumar Nikos Paragios Ramin Zabih (presenter)
Markov Random Fields (MRF)
Learning to Segment with Diverse Data M. Pawan Kumar Stanford University.
Robust Higher Order Potentials For Enforcing Label Consistency
An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.
P 3 & Beyond Solving Energies with Higher Order Cliques Pushmeet Kohli Pawan Kumar Philip H. S. Torr Oxford Brookes University CVPR 2007.
Improved Moves for Truncated Convex Models M. Pawan Kumar Philip Torr.
2010/5/171 Overview of graph cuts. 2010/5/172 Outline Introduction S-t Graph cuts Extension to multi-label problems Compare simulated annealing and alpha-
Stereo & Iterative Graph-Cuts Alex Rav-Acha Vision Course Hebrew University.
Efficiently Solving Convex Relaxations M. Pawan Kumar University of Oxford for MAP Estimation Philip Torr Oxford Brookes University.
Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr.
Stereo Computation using Iterative Graph-Cuts
What Energy Functions Can be Minimized Using Graph Cuts? Shai Bagon Advanced Topics in Computer Vision June 2010.
Relaxations and Moves for MAP Estimation in MRFs M. Pawan Kumar STANFORDSTANFORD Vladimir KolmogorovPhilip TorrDaphne Koller.
Hierarchical Graph Cuts for Semi-Metric Labeling M. Pawan Kumar Joint work with Daphne Koller.
Measuring Uncertainty in Graph Cut Solutions Pushmeet Kohli Philip H.S. Torr Department of Computing Oxford Brookes University.
Computer vision: models, learning and inference
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris École des Ponts ParisTech INRIA Saclay, Île-de-France Joint work with Phil.
Probabilistic Inference Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Planar Cycle Covering Graphs for inference in MRFS The Typhon Algorithm A New Variational Approach to Ground State Computation in Binary Planar Markov.
Object Stereo- Joint Stereo Matching and Object Segmentation Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on Michael Bleyer Vienna.
Rounding-based Moves for Metric Labeling M. Pawan Kumar Center for Visual Computing Ecole Centrale Paris.
Discrete Optimization Lecture 2 – Part I M. Pawan Kumar Slides available online
Discrete Optimization Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Probabilistic Inference Lecture 3 M. Pawan Kumar Slides available online
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London.
Discrete Optimization in Computer Vision M. Pawan Kumar Slides will be available online
Discrete Optimization Lecture 3 – Part 1 M. Pawan Kumar Slides available online
1 Markov Random Fields with Efficient Approximations Yuri Boykov, Olga Veksler, Ramin Zabih Computer Science Department CORNELL UNIVERSITY.
Probabilistic Inference Lecture 5 M. Pawan Kumar Slides available online
Tractable Higher Order Models in Computer Vision (Part II) Slides from Carsten Rother, Sebastian Nowozin, Pusohmeet Khli Microsoft Research Cambridge Presented.
The University of Ontario CS 4487/9687 Algorithms for Image Analysis Multi-Label Image Analysis Problems.
Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online
Using Combinatorial Optimization within Max-Product Belief Propagation
Inference for Learning Belief Propagation. So far... Exact methods for submodular energies Approximations for non-submodular energies Move-making ( N_Variables.
Probabilistic Inference Lecture 2 M. Pawan Kumar Slides available online
Discrete Optimization Lecture 1 M. Pawan Kumar Slides available online
Pushmeet Kohli. E(X) E: {0,1} n → R 0 → fg 1 → bg Image (D) n = number of pixels [Boykov and Jolly ‘ 01] [Blake et al. ‘04] [Rother, Kolmogorov and.
Deterministic Algorithms for Submodular Maximization Problems Moran Feldman The Open University of Israel Joint work with Niv Buchbinder.
Mean field approximation for CRF inference
Tightening LP Relaxations for MAP using Message-Passing David Sontag Joint work with Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss.
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts M. Pawan Kumar Daphne Koller Aim: To obtain accurate, efficient maximum a posteriori (MAP)
Rounding-based Moves for Metric Labeling M. Pawan Kumar École Centrale Paris INRIA Saclay, Île-de-France.
Introduction of BP & TRW-S
Alexander Shekhovtsov and Václav Hlaváč
Markov Random Fields with Efficient Approximations
Discrete Inference and Learning
Discrete Optimization Methods Basic overview of graph cuts
Graphical Models and Learning
Expectation-Maximization & Belief Propagation
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts
Presentation transcript:

Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris Joint work with Phil Torr, Daphne Koller

Metric Labeling Variables V = { V 1, V 2, …, V n }

Metric Labeling Variables V = { V 1, V 2, …, V n }

Metric Labeling VaVa VbVb Labels L = { l 1, l 2, …, l h } Variables V = { V 1, V 2, …, V n } Labeling f: { 1, 2, …, n}  {1, 2, …, h} E(f) = Σ a θ a (f(a)) + Σ (a,b) w ab d(f(a),f(b)) min f θ a (f(a)) θ b (f(b)) w ab d(f(a),f(b)) w ab ≥ 0 d is metric

Metric Labeling VaVa VbVb E(f) min f NP hard = Σ a θ a (f(a)) + Σ (a,b) w ab d(f(a),f(b)) Low-level vision applications

 Minka. Expectation Propagation for Approximate Bayesian Inference, UAI, 2001  Murphy et al. Loopy Belief Propagation: An Empirical Study, UAI, 1999  Winn et al. Variational Message Passing, JMLR, 2005  Yedidia et al. Generalized Belief Propagation, NIPS, 2001  Besag. On the Statistical Analysis of Dirty Pictures, JRSS, 1986  Boykov et al. Fast Approximate Energy Minimization via Graph Cuts, PAMI, 2001  Komodakis et al. Fast, Approximately Optimal Solutions for Single and Dynamic MRFs, CVPR, 2007  Lempitsky et al. Fusion Moves for Markov Random Field Optimization, PAMI, 2010  Chekuri et al. Approximation Algorithms for Metric Labeling, SODA, 2001  Goemans et al. Improved Approximate Algorithms for Maximum-Cut, JACM, 1995  Muramatsu et al. A New SOCP Relaxation for Max-Cut, JORJ, 2003  Ravikumar et al. QP Relaxations for Metric Labeling, ICML, 2006  Alahari et al. Dynamic Hybrid Algorithms for MAP Inference, PAMI 2010  Kohli et al. On Partial Optimality in Multilabel MRFs, ICML, 2008  Rother et al. Optimizing Binary MRFs via Extended Roof Duality, CVPR, Approximate Algorithms

Outline Linear Programming Relaxation Move-Making Algorithms Comparison Rounding-based Moves

Integer Linear Program Number of facets grows exponentially in problem size Minimize a linear function over a set of feasible solutions Indicator x a (i)  {0,1} for each variable V a and label l i

Linear Programming Relaxation Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003 Indicator x a (i)  {0,1} for each variable V a and label l i

Linear Programming Relaxation Schlesinger, 1976; Chekuri et al., 2001; Wainwright et al., 2003 Indicator x a (i)  [0,1] for each variable V a and label l i

Outline Linear Programming Relaxation Move-Making Algorithms Comparison Rounding-based Moves

Move-Making Algorithms Space of All Labelings f

Expansion Algorithm Variables take label l α or retain current label Slide courtesy Pushmeet Kohli Boykov, Veksler and Zabih, 2001

Expansion Algorithm Sky House Tree Ground Initialize with TreeStatus:Expand GroundExpand HouseExpand Sky Slide courtesy Pushmeet Kohli Variables take label l α or retain current label Boykov, Veksler and Zabih, 2001

Outline Linear Programming Relaxation Move-Making Algorithms Comparison Rounding-based Moves

Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) s ab d(f*(a),f*(b)) ≥

Multiplicative Bounds f*: Optimal Labelingf: Estimated Labeling ≤ B Σ a θ a (f(a)) + Σ (a,b) s ab d(f(a),f(b)) Σ a θ a (f*(a)) + Σ (a,b) s ab d(f*(a),f*(b))

Multiplicative Bounds ExpansionLP Potts22 Metric2MO(log h) Truncated Linear 2M2 + √2 Truncated Quadratic 2MO(√M) M = ratio of maximum and minimum distance

Outline Linear Programming Relaxation Move-Making Algorithms Comparison Rounding-based Moves –Complete Rounding –Interval Rounding –Hierarchical Rounding

Complete Rounding Treat x a (i)  [0,1] as probability that f(a) = i Cumulative probability y a (i) = Σ j≤i x a (j) 0y a (1) y a (2) y a (h) = 1 r Generate a random number r  (0,1] Assign the label next to r y a (k) y a (i)

Complete Move VaVa VbVb θ ab (i,k) = s ab d(i,k)NP-hard

Complete Move VaVa VbVb θ ab (i,k) = s ab d’(i,k) d’(i,k) ≥ d(i,k) d’ is submodular

Complete Move VaVa VbVb θ ab (i,k) = s ab d’(i,k) d’(i,k) ≥ d(i,k) d’ is submodular

Complete Move New problem can be solved using minimum cut Same multiplicative bound as complete rounding Multiplicative bound is tight

Outline Linear Programming Relaxation Move-Making Algorithms Comparison Rounding-based Moves –Complete Rounding –Interval Rounding –Hierarchical Rounding

Interval Rounding Treat x a (i)  [0,1] as probability that f(a) = i Cumulative probability y a (i) = Σ j≤i x a (j) 0y a (1) y a (2) y a (h) = 1 y a (k) y a (i) Choose an interval of length h’

Interval Rounding Treat x a (i)  [0,1] as probability that f(a) = i Cumulative probability y a (i) = Σ j≤i x a (j) r Generate a random number r  (0,1] Assign the label next to r if it is within the interval y a (k) y a (i) Choose an interval of length h’ REPEAT

Interval Move VaVa VbVb θ ab (i,k) = s ab d(i,k) Choose an interval of length h’

Interval Move VaVa VbVb θ ab (i,k) = s ab d(i,k) Choose an interval of length h’ Add the current labels

Interval Move VaVa VbVb θ ab (i,k) = s ab d’(i,k) Choose an interval of length h’ Add the current labels d’(i,k) ≥ d(i,k) d’ is submodular Solve to update labels Repeat until convergence

Interval Move Each problem can be solved using minimum cut Same multiplicative bound as interval rounding Multiplicative bound is tight Kumar and Torr, NIPS 2008

Outline Linear Programming Relaxation Move-Making Algorithms Comparison Rounding-based Moves –Complete Rounding –Interval Rounding –Hierarchical Rounding

Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Hierarchical clustering of labels (e.g. r-HST metrics)

Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels L 1, L 2 or L 3 Move down the hierarchy until the leaf level

Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels l 1, l 2 or l 3

Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels l 4, l 5 or l 6

Hierarchical Rounding L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Assign variables to labels l 7, l 8 or l 9

Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Hierarchical clustering of labels (e.g. r-HST metrics)

Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Obtain labeling f 1 restricted to labels {l 1,l 2,l 3 }

Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Obtain labeling f 2 restricted to labels {l 4,l 5,l 6 }

Hierarchical Move L1L1 L2L2 l1l1 l2l2 l3l3 l4l4 l5l5 l6l6 l7l7 l8l8 l9l9 L3L3 Obtain labeling f 3 restricted to labels {l 7,l 8,l 9 }

Hierarchical Move L1L1 L2L2 L3L3 VaVa VbVb f 1 (a) f 2 (a) f 3 (a) Move up the hierarchy until we reach the root f 1 (b) f 2 (b) f 3 (b)

Hierarchical Move Each problem can be solved using minimum cut Same multiplicative bound as hierarchical rounding Multiplicative bound is tight Kumar and Koller, UAI 2009

Conclusion Move- Making LP Potts22 MetricO(log h) Truncated Linear 2 + √2 Truncated Quadratic O(√M) M = ratio of maximum and minimum distance

Open Problems Moves for general rounding schemes Higher-order energy functions Better comparison criterion

Questions?