Robert Kosara, Helwig Hauser 1InfoVis STAR The State of the Art in Information Visualization Robert Kosara, Helwig Hauser.

Slides:



Advertisements
Similar presentations
Multi-Dimensional Data Visualization
Advertisements

Information Visualization Survey
Trees and Cushions Jack van Wijk Eindhoven University of Technology Treemap Workshop, May 31, 2001 HCIL, University of Maryland.
Jun 2, 2014 IAT Trees2 Chapter 3.2 of Spence ______________________________________________________________________________________ SCHOOL OF INTERACTIVE.
Designing for Multiple Screen Resolutions Screen resolution is the width and height of the computer screen in pixels Most monitors have many screen resolutions.
MTP – Stage 1 Sanobar Nishat. Outline  Peculiarities of the mobile visualization context  Different aspects of mobile visualization design  Map-based.
Visual Analytics Research at WPI Dr. Matthew Ward and Dr. Elke Rundensteiner Computer Science Department.
Abstract Syntax Tree Rendering Noah Brickman CMPS 203.
Visualization CSC 485A, CSC 586A, SENG 480A Instructor: Melanie Tory.
Evaluation Adam Bodnar CPSC 533C Monday, April 5, 2004.
Thank you for coming here!. Purpose of Experiment Compare two visualization systems. You will play with one of them.
Matthias Mayer The Table Lens - Ramana Rao & Stuart K. Card Information Visualization 838b - February 21st 2001 The Table Lens: Merging.
Glyphs Presented by Bertrand Low. Presentation Overview A Taxonomy of Glyph Placement Strategies for Multidimensional Data VisualizationA Taxonomy of.
Table Lens From papers 1 and 2 By Tichomir Tenev, Ramana Rao, and Stuart K. Card.
1 18 April 2007 vizNET-LEEDS-PRES A Rough Guide to Data Visualization – Part 2 VizNET 2007 Annual Event Ken Brodlie School of Computing University.
Treemap Implementation and Application Workshop Ben Shneiderman Human-Computer Interaction Laboratory University of Maryland Marc Frons Smartmoney.
14.1 Vis_04 Data Visualization Lecture 14 Information Visualization : Part 2.
Helwig Hauser VRVis Research Center Thoughts on Medical Visualization – my 2 [Euro-] cents.
Visual Computing Lecture 2 Visualization, Data, and Process.
© Anselm Spoerri Information Visualization Information Visualization Course Prof. Anselm Spoerri
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
2-D: Focus+Context cs5984: Information Visualization Chris North.
Introduction to Information Visualization
Document (Text) Visualization Mao Lin Huang. Paper Outline Introduction Visualizing text Visualization transformations: from text to pictures Examples.
NERCOMP Workshop, Dec. 2, 2008 Information Visualization: the Other Half of Data Analysis Dr. Matthew Ward Computer Science Department Worcester Polytechnic.
By LaBRI – INRIA Information Visualization Team. Tulip 2010 – version Tulip is an information visualization framework dedicated to the analysis.
Introduction to Information Visualization Jian Huang, CS 594, Spring 2002 This set of slides are modified from the tutorial given by Prof. Daniel Keim.
Information Design and Visualization
© Anselm Spoerri Lecture 4 Information Visualization –Origins –Data Types, Display Variables and Ranking of Visual Properties –Mappings + Timings –Key.
© 2010 Pearson Addison-Wesley. All rights reserved. Addison Wesley is an imprint of Designing the User Interface: Strategies for Effective Human-Computer.
Enabling Technology for Participatory Spatial Decision Making Hans Voss Gennady Andrienko Natalia Andrienko Spatial Decision Support Team
Visualization Blaz Zupan Faculty of Computer & Info Science University of Ljubljana, Slovenia.
Visual Perspectives iPLANT Visual Analytics Workshop November 5-6, 2009 ;lk Visual Analytics Bernice Rogowitz Greg Abram.
Interactive Information Visualization of a Million Items
Advanced Scientific Visualization
Media Arts and Technology Graduate Program UC Santa Barbara MAT 259 Visualizing Information Winter 2006George Legrady1 MAT 259 Visualizing Information.
INFM 603: Information Technology and Organizational Context Jimmy Lin The iSchool University of Maryland Thursday, November 1, 2012 Session 9: Visualization.
Visualizing Tabular Data CS 4390/5390 Data Visualization Shirley Moore, Instructor September 29,
V Material obtained from summer workshop in Guildford County, July-2014.
Copyright © 2005, Pearson Education, Inc. Slides from resources for: Designing the User Interface 4th Edition by Ben Shneiderman & Catherine Plaisant Slides.
The Table Lens: Merging Graphical and Symbolic Representations in an Interactive Focus+Context Visualization for Tabular Information Ramana Rao and Stuart.
Graph Visualization and Beyond … Anne Denton, April 4, 2003 Including material from a paper by Ivan Herman, Guy Melançon, and M. Scott Marshall.
Info Vis: Multi-Dimensional Data Chris North cs3724: HCI.
Information Visualization External Cognition Using perception to amplify cognition 34 x
1D & 2D Spaces for Representing Data Mao Lin Huang.
Information Models An “information space” that users navigate –Information integration, a key aspect of mental model Want a structure that is simple and.
Three Dimensional Information Visualisation Peter Young Visualisation Research Group Centre for Software Maintenance Department of Computer Science University.
Visual Overview Strategies cs5984: Information Visualization Chris North.
Chapter 11 Information Visualization
Uncovering Clusters in Crowded Parallel Coordinates Visualizations Alimir Olivettr Artero, Maria Cristina Ferreiara de Oliveira, Haim levkowitz Information.
Data Visualization Fall Information Visualization Fall 2015Data Visualization2 Upon now, we dealt with scientific visualization (scivis) Scivis.
INFORMATION VISUALIZATION
Visualization Programming: “Libraries” and “Toolkits” Class visualization resources CSCI 6361.
Visualization of Washing Powder Formulation ———seeking the best ingredients of washing powder.
Multi-Dimensional Data Visualization
Multi-Dimensional Data Visualization cs5984: Information Visualization Chris North.
Information Visualization: Navigation Chris North cs3724: HCI.
Comp 15 - Usability & Human Factors Unit 12b - Information Visualization This material was developed by Columbia University, funded by the Department of.
1 Dimensions / Depth James Slack CPSC 533C February 10, 2003.
Information Visualization Course
Information Visualization: Navigation
Advanced Scientific Visualization
cs5764: Information Visualization Chris North
Text Visualization Lecture 11
Information Visualization 2: Overview and Navigation
Information Design and Visualization
Information Visualization 2: Overview and Navigation
Introduction to Visual Analytics
Information Visualization (Part 1)
Visualization of Content Information in Networks using GlyphNet
Presentation transcript:

Robert Kosara, Helwig Hauser 1InfoVis STAR The State of the Art in Information Visualization Robert Kosara, Helwig Hauser

2InfoVis STAR Overview Taxonomy Interaction Method Types  1D Methods  2D Methods  nD Methods  Trees InfoVis and SciVis User Studies Future of InfoVis  Networks/Graphs  Temporal Data  Text  Software

Robert Kosara, Helwig Hauser 3InfoVis STAR Taxonomy Most important and most difficult problem The classic: Shneiderman:VL:1996 Problems:  Primarily targets data types (not tasks!)  Mixes data and visual dimensions (cone trees are 3D?!)  Strange classifications (text is 1D?!)  Does not account for use of visualization  A different taxonomy is needed

Robert Kosara, Helwig Hauser 4InfoVis STAR Other Taxonomies There are others...  Operator interaction framework (Chi:InfoVis:1998)  sdf

Robert Kosara, Helwig Hauser 5InfoVis STAR Our Taxonomy Oriented at use of the data  Presentation of the data  How people work with the method  Available interaction methods One method possibly in several categories

Robert Kosara, Helwig Hauser 6InfoVis STAR Interaction Focus+Context (F+C)  Distortion-oriented  Magic lenses/Toolglasses  In-Place  A general(ly good) idea Multiple Views Linking&Brushing (L&B)

Robert Kosara, Helwig Hauser 7InfoVis STAR Provide more space for important parts – but don‘t lose context Methods:  Fisheye Views (Furnas:SIGCHI:1986)  Perspective Wall (Mackinlay:CHI:1991)  Document lens (Robertson:UIST:1993)  Etc.  Review and Taxonomy (Leung:TCHI:1994) F+C: Distortion-oriented

Robert Kosara, Helwig Hauser 8InfoVis STAR F+C: Magic Lenses Provide more/other information for objects on screen Several similar techniques Methods:  2D Taxonomy (Bier:CHI:1994)  3D (Viega:UIST:1996)  F+C Screen (Baudisch:UIST:2001)

Robert Kosara, Helwig Hauser 9InfoVis STAR F+C: In-Place Point the user at important objects – use different style, color, etc. for F+C Methods:  GeoSpace (Lokuge:CHI:1995)  Cheops (Beaudoin:Vis:1996)  Semantic Depth of Field (SDOF) (Kosara:InfoVis:2001)

Robert Kosara, Helwig Hauser 10InfoVis STAR Multiple Views Different views on the same data (Baldonado:AVI:2000, North:HCS:2000) Provide  More and  Different information  Interaction  Focus+Context

Robert Kosara, Helwig Hauser 11InfoVis STAR Linking&Brushing (L&B) Brush data values in one view See the same values highlighted in other view (linking) (Becker:Technometrics:1987) Different kinds of brushing (Wills:InfoVis:1996)

Robert Kosara, Helwig Hauser 12InfoVis STAR 1D Methods Essentially linear work with data of any dimensionality or structure Methods  Table Lens (Rao:CHI:1994)  + Multiple focal levels (Tenev:InfoVis:1997)  SuperTable + Scatterplot (Klein:IV:2002)  LensBar (Masui:InfoVis:1998)

Robert Kosara, Helwig Hauser 13InfoVis STAR 2D Methods Overlapping scalar fields and GIS Scalar fields  Map with bars (Healey:TVCG:1999)  Enridged contour maps (Wijk:Vis:2001)  Oriented texture slivers (Weigle:GI:2000) Geographical Information Systems (GIS)  GeoSpace (Lokuge:CHI:1995)  Macroscope (Lieberman:UIST:1994)  Etc.

Robert Kosara, Helwig Hauser 14InfoVis STAR High-Dimensional („nD“) Methods Data is  High-Dimensional  Unstructured Different Types of Methods  Glyphs  Non-Orthogonal display  Projections and selections  Interaction-rich methods

Robert Kosara, Helwig Hauser 15InfoVis STAR nD: Glyphs Encode data in the features of an object Methods  Chernoff faces (Chernoff:AmStat:1973)  Emphatic Visualization Algorithm (Loizides:IV:2002)  Cardiovascular data (Agutter:InfoVis:2001)  Shapes (Ebert:CG:2000)  Stick Figures (Pickett:SMC:1988)

Robert Kosara, Helwig Hauser 16InfoVis STAR nD: Non-Orthogonal Display Display dimensions non-orthogonally Methods:  Parallel coordinates (Inselberg:InfoVis:1999)  Angular Brushing (Hauser:InfoVis:2002)  Higher order PCs (Theisel:CGF:1998)  Star plot (Chambers:1983)  Circle Segments (Ankerst:Vis:1996)  Sunflower (Rose:InfoVis:1999)

Robert Kosara, Helwig Hauser 17InfoVis STAR nD: Projections and Selections Reduce the dimensionality by projection and selection Methods:  Scatterplot matrix (Cleveland:1985)  Hyperslice (Wijk:Vis:1993),Hypercell (Santos:VisSym:2002)  Dimensional stacking (LeBlanc:Vis:1990)  Prosection Views (Furnas:JCGS:1994), Prosection Matrix (Spence:InfoVis:1995)

Robert Kosara, Helwig Hauser 18InfoVis STAR nD: Interaction-rich Methods Interaction-intensive methods for nD Methods:  Worlds within worlds (Feiner:UIST:1990)  Reorderable Matrix (Bertin:1981, Siirtola:IV:1999)  Advizor (Eick:TVCG:2000)

Robert Kosara, Helwig Hauser 19InfoVis STAR Hierarchical (Tree) Data Very common in literature Special Case of graphs – but separate methods make sense Different Methods  Side View  Top View

Robert Kosara, Helwig Hauser 20InfoVis STAR Trees: Side View Show the branch structure of the tree Methods  Cone and cam trees (Robertson:CHI:1991)  Generalized cone trees (Jeong:InfoVis:1998)  Cylindrical trees (Dachselt:InfoVis:2001)  Pyramids (Andrews:IV:2002) AsbruView (Kosara:AIMJ:2001)  Botanical tree vis (Wijk:InfoVis:2001)

Robert Kosara, Helwig Hauser 21InfoVis STAR Trees: Top View Space-filling trees Methods  Treemap (Shneiderman:ToG:1992)  Squarified treemap (Bruls:VisSym:2000)  Ordered treemap layout (Shneiderman:InfoVis:2001)  Quantum/Bubble treemap (Bederson:UIST:2001)  Cushion treemap (Wijk:InfoVis:1999)

Robert Kosara, Helwig Hauser 22InfoVis STAR Network (Graph) Data Directed and undirected graphs, computer networks Methods:  Graph drawing survey (Herman:TVCG:2000)  H3 (Munzner:InfoVis:1997)  Circles (Yee:InfoVis:2001)  MBone (Munzner:InfoVis:1996)  SeeNet (Becker:TVCG:1996)

Robert Kosara, Helwig Hauser 23InfoVis STAR Temporal Data Record past and plan the future Past:  Spirals (Alexa:InfoVis:2001)  Cluster & calendar (Wijk:InfoVis:1999) Future:  SOPOs (Rit:AAAI:1986)  AsbruView (Kosara:AIMJ:2001)

Robert Kosara, Helwig Hauser 24InfoVis STAR Textual Data Why text is more than one-dimensional Methods:  SPIRE (Wise:InfoVis:1995)  ThemeRiver (Havre:TVCG:2002)  Shape-based (Rohrer:CGA:1999)  Galaxy of news (Rennison:UIST:1994)

Robert Kosara, Helwig Hauser 25InfoVis STAR Show structure of program, support software testing Methods:  Seesoft (Eick:TSE:1992, Ball:Computer:1996)  Program testing (Eagan:InfoVis:2001)  InfoBUG (Chuah:InfoVis:1997)  Program structure (Telea:VisSym:2002) Software Visualization

Robert Kosara, Helwig Hauser 26InfoVis STAR InfoVis and SciVis Support and enhance SciVis with InfoVis Examples:  WEAVE (Gresh:Vis:2000)  3D transfer functions (Kniss:Vis:2001)  Smooth brushing (Doleisch:WSCG:2002)

Robert Kosara, Helwig Hauser 27InfoVis STAR Perception, User Studies Find out how effective a method is Papers:  2D vs. 3D (Robertson:UIST:1998, Smallman:CGA:2001, Tavanti:InfoVis:2001, Cockburn:CHI:2002)  SDOF-Study (Kosara:VisSym:2002)  „Which Blair Project“ (Rogowitz:Vis:2001)  Reorderable matrix study (Siirtola:IV:1999)  Tree visus (Barlow:InfoVis:2001)

Robert Kosara, Helwig Hauser 28InfoVis STAR The Future of InfoVis Large Data  Fast  Visually effective More integration of different methods More interaction in methods More perception, cognition, studies InfoVis as secondary task