Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, 30. 10. 2007 Jožef Stefan Institute, Ljubljana, Slovenia.

Slides:



Advertisements
Similar presentations
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Advertisements

Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Chernogolovka, September 2012 Cavity-coupled strongly correlated nanodevices Gergely Zaránd TU Budapest Experiment: J. Basset, A.Yu. Kasumov, H. Bouchiat,
1 Tuning Molecule-mediated Spin Coupling in Bottom-up Fabricated Vanadium-TCNE Nanostructures Daniel Wegner Institute of Physics and Center for Nanotechnology.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Renormalised Perturbation Theory ● Motivation ● Illustration with the Anderson impurity model ● Ways of calculating the renormalised parameters ● Range.
Introduction to the Kondo Effect in Mesoscopic Systems.
Quantum Dots – Past, Present and Open Questions Yigal Meir Department of Physics & The Ilse Katz Center for Meso- and Nano-scale Science and Technology.
Theory of the Quantum Mirage*
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Quantum Dots and Spin Based Quantum Computing Matt Dietrich 2/2/2007 University of Washington.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
IWCE, Purdue, Oct , 2004 Seungwon Lee Exchange Coupling in Si-Quantum-Dot-Based Quantum Computer Seungwon Lee 1, Paul von Allmen 1, Susan N. Coppersmith.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Correlations in quantum dots: How far can analytics go?
Transport properties: conductance and thermopower
Atomic-scale Engeered Spins at a Surface
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia.
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Application of the Cluster Embedding Method to Transport Through Anderson Impurities George Martins Carlos Busser Physics Department Oakland University.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Adiabatic quantum pumping in nanoscale electronic devices Adiabatic quantum pumping in nanoscale electronic devices Huan-Qiang Zhou, Sam Young Cho, Urban.
Kvantna prepletenost v nano sistemih (1) motivacija (2) definicija kvantne prepletenosti (3) statični in leteči kvantni biti (4) prepletenost na zahtevo.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
NIRT: Building Nanospintronic and Nanomagnetic Structures: Growth, Manipulation, and Characterization at the Atomic Scale DMR Arthur R. Smith,
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems.
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Journal Club február 16. Tóvári Endre Resonance-hybrid states in a triple quantum dot PHYSICAL REVIEW B 85, (R) (2012) Using QDs as building.
Bulk Hybridization Gap and Surface Conduction in the Kondo Insulator SmB 6 Richard L. Greene, University of Maryland College Park, DMR Recently,
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Theory of the Fano Effect and Quantum Mirage STM Spectroscopy of Magnetic Adatoms on Metallic Surfaces.
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Complex magnetism of small clusters on surfaces An approach from first principles Phivos Mavropoulos IFF, Forschungszentrum Jülich Collaboration: S. Lounis,
Spin-orbit interaction in semiconductor quantum dots systems
Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot Experiment: B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-H. Bae, N. Kim Theory:
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Quantum entanglement, Kondo effect, and electronic transport in
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
Conductance of nanosystems with interaction
Conductance through coupled quantum dots
Conductance through coupled quantum dots
Kondo effect Him Hoang
STM Differential Conductance of a Pair of Magnetic Adatoms
Spin thermopower in the overscreened Kondo model
Presentation transcript:

Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia

Co-workers Quantum transport theory –prof. Janez Bonča 1,2 –prof. Anton Ramšak 1,2 –Tomaž Rejec 1,2 –Jernej Mravlje 1 Experimental surface science and STM –prof. Albert Prodan 1 –prof. Igor Muševič 1,2 –Erik Zupanič 1 –Herman van Midden 1 –Ivan Kvasić 1 1 Jožef Stefan Institute, Ljubljana, Slovenia 2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Transport in nanostructures Cu/Cu(111) IJS, 2007

Outline Kondo physics in quantum dots Coupled quantum dots as impurity clusters: –side-coupled double QD and two-stage Kondo effect –N parallel QDs (N=1...5, one channel) and quantum phase transitions –N serial QDs (N=1…4, two channels) and non-Fermi liquid physics Low-temperature STM: manipulations and single- atom spectroscopy

Tools: SNEG and NRG Ljubljana Add-on package for the computer algebra system Mathematica for performing calculations involving non-commuting operators Efficient general purpose numerical renormalization group code flexible and adaptable highly optimized (partially parallelized) easy to use Both are freely available under the GPL licence:

W. G. van der Wiel, S. de Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, L. P. Kouwenhoven, Science 289, 2105 (2000) Conduction as a function of gate voltage for decreasing temperature Kondo effect in quantum dots

Scattering theory “Landauer formula” See, for example, M. Pustilnik, L. I. Glazman, PRL 87, (2001).

Keldysh approach One impurity: Y. Meir, N. S. Wingreen. PRL 68, 2512 (1992).

Conductance of a quantum dot (SIAM) Computed using NRG.

Systems of coupled quantum dots L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. 97, (2006). M. Korkusinski, I. P. Gimenez, P. Hawrylak, L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, Phys. Rev. B 75, (2007). triple-dot device

Systems of coupled quantum dots and “exotic” types of the Kondo effect

Two-stage Kondo effect R. Žitko, J. Bonča: Enhanced conductance through side-coupled double quantum dots, Phys. Rev. B 73, (2006). See also: P. S. Cornaglia, D. R. Grempel, PRB 71, (2005) M. Vojta, R. Bulla, W. Hofstetter, PRB 65, (R) (2002).

For J<T K, Kondo screening occurs in two steps. T K (1) T K (2)

Spin-charge separation  Simultaneous spin and charge Kondo effects R. Žitko, J. Bonča: Spin-charge separation and simultaneous spin and charge Kondo effect, Phys. Rev. B 74, (2006).

A. Ramšak, J. Mravlje, R. Žitko, J. Bonča: Spin qubits in double quantum dots - entanglement versus the Kondo effect Phys. Rev. B 74, (R) (2006) The inter-impurity spin entanglement vs. the Kondo effect

Parallel quantum dots and the N-impurity Anderson model R. Žitko, J. Bonča: Multi-impurity Anderson model for quantum dots coupled in parallel, Phys. Rev. B 74, (2006) V k = e ikL v k V k ≡V (L  0)

Effective single impurity S=N/2 Kondo model The RKKY interaction is ferromagnetic, J RKKY >0: S is the collective S=N/2 spin operator of the coupled impurities, S=P(  S i )P Effective model (T<J RKKY ): J RKKY  0.62 U(  0 J K ) 2 4 th order perturbation in V k

Free orbital regime (FO) Local moment regime (LM) Ferro- magnetically frozen (FF) Strong- coupling regime (SC)

The spin-N/2 Kondo effect Full line: NRGSymbols: Bethe Ansatz

Discontinuities in G  quantum phase transitions

Chrage fluctuations vs. ferromagnetic alignment first-order transition

Kondo modelKondo model + potential scattering

S=1 Kondo model S=1 Kondo model + potential scattering S=1/2 Kondo model + strong potential scattering

Gate-voltage controlled spin filtering

Local occupancy variation Occupancy switching: Γ-dependent coupling vs. charging energy U

Spectral functions - underscreening See also: A. Posazhennikova, P. Coleman, PRL 94, (2005).

Kosterlitz-Thouless transition  1 =+ ,  2 =-  S=1 Kondo S=1/2 Kondo

Triple quantum dot R. Žitko, J. Bonča, A. Ramšak, T. Rejec: Kondo effect in triple quantum dot, Phys. Rev. B 73, (2006) R. Žitko, J. Bonča: Fermi-liquid versus non-Fermi-liquid behavior in triple quantum dots, Phys. Rev. Lett. 98, (2007)

J  t Good agreement between 3 methods: CPMC – constrained path quantum Monte Carlo Zhang, Carlson and Gubernatis, PRL 74, 3652 (1995); PRB 59, (1999). GS – projection/variational method. Schonhammer, Z. Phys. B 21, 389 (1975); PRB 13, 4336 (1976), Gunnarson and Schonhammer, PRB 31, 4185 (1985), Rejec and Ramšak, PRB 68, (2003). NRG – numerical renormalization group Krishna-murthy, Wilkins and Wilson, PRB 21, 1003 (1980); Costi, Hewson and Zlatić, J. Phys.: Condens. Matter 6, 2519, (1994).

Non-Fermi liquid behavior of the two-channel Kondo model type

Two-channel Kondo model Experimental observation: R. M. Potok et al., Nature 446, 167 (2007).

G side ~G 0 /2, G serial ~0  non-Fermi liquid G serial =G 0  Fermi liquid See also: G. Zaránd et al. PRL 97, (2006). T K (1) T K (2) TT NFL

CFT prediction: 0, 1/8, 1/2, 5/8, 1, 1+1/8,...

Conductance: quantum dots in series N=2 N=3N=4 See also: A. Oguri, Y. Nisikawa and A. C. Hewson, J. Phys. Soc. Japan, (2005). Y. Nisikawa, A. Oguri. Phys. Rev. B 73, (2006).

Low-temperature STM (2004)

Besocke beetle Working temperature: 5.9 K Gerhard Meyer (FU Berlin, now at IBM Research Division, Rüschlikon) Stefan Fölsch (Paul Drude Institute, Berlin) SPS-Createc GmbH

High mechanical stability!

Erik Zupanič, IJS, July Cu/Cu(111) at T=10 K.

Scanning tunneling spectroscopy: we measure local density of states, i.e. spectral functions. STM tip metal surface Fano resonance in STS spectra due to Kondo effect in Co ions on various surfaces. [P. Wahl et al., Phys. Rev. Lett., , 2004]

Two-impurity Kondo problem on surfaces P. Wahl et al., Phys. Rev. Lett. 98, (2007).

Conclusions and outlook Impurity clusters can be systematically studied with ease using flexible NRG codes Very rich physics: various Kondo regimes, quantum phase transitions, etc. But to what extent can these effects be experimentally observed? Towards more realistic models: better description of inter-dot interactions, role of QD shape and distances. Surface Kondo effect in clusters of two or three magnetic adatoms: –low-temperature high-field experimental studies –DFT + NRG study