О проблеме прогноза больших солнечных вспышек Б.В. Сомов Московский Государственный Университет им. М.В. Ломоносова Государственный Астрономический Институт.

Slides:



Advertisements
Similar presentations
SPD June 16, 2003 Separators: Fault Lines in the Magnetic Field Dana Longcope Montana State University.
Advertisements

Solar Theory (MT 4510) Clare E Parnell School of Mathematics and Statistics.
The magnetic nature of solar flares Paper by E.R. Priest & T.G. Forbes Review presented by Hui Song.
Estimating the magnetic energy in solar magnetic configurations Stéphane Régnier Reconnection seminar on Thursday 15 December 2005.
Coronal Responses to Explosive Events Adria C. Updike Smith College / Harvard-Smithsonian Center for Astrophysics Amy Winebarger and Kathy Reeves, Center.
Energy and Helicity Budget of Four Solar Flares and Associated Magnetic Clouds. Maria D. Kazachenko, Richard C. Canfield, Dana Longcope, Jiong Qiu Montana.
Study of Magnetic Helicity Injection in the Active Region NOAA Associated with the X-class Flare of 2011 February 15 Sung-Hong Park 1, K. Cho 1,
CME/Flare Mechanisms Solar “minimum” event this January For use to VSE must be able to predict CME/flare Spiro K. Antiochos Naval Research Laboratory.
Colorado Research Associates Division, NorthWest Research Associates Magnetic Charge Topology (MCT) Analysis of NOAA AR8210 Graham Barnes NWRA/CoRA K.D.
Multi-Wavelength Studies of Flare Activities with Solar-B ASAI Ayumi Kwasan Observatory, Kyoto University Solar-B Science February 4, 2003.
Hard X-ray Production in a Failed Filament Eruption David, Alexander, Rui Liu and Holly R., Gilbert 2006 ApJ 653, L719 Related Paper: Ji. H. et al., 2003.
Current sheets formation along magnetic separators in 3d Dana Longcope Montana State University Thanks: I Klapper, A.A. Van Ballegooijen NSF-ATM.
Abstract Individual AR example: 8910 The only selection criterion imposed in this study is that the AR must be within 30 degrees of disk center to minimize.
A Diachronic Topological Analysis of the 13th May 2005 Solar Flare William M.R. Simpson, Angela Des Jardins U NIVERSITY OF S T. A NDREWS, M ONTANA S TATE.
Free Magnetic Energy and Flare Productivity of Active Regions Jing et al. ApJ, 2010, April 20 v713 issue, in press.
Vincent Surges Advisors: Yingna Su Aad van Ballegooijen Observations and Magnetic Field Modeling of a flare/CME event on 2010 April 8.
One mask to group them all, One code to find them, One file to store them all, And in a structure bind them. William (Tolkien) Simpson m.
Новые результаты по физике солнечных вспышек С.И. Безродных, А.В. Орешина, И.В. Орешина, Б.В. Сомов.
MSU Team: R. C. Canfield, D. W. Longcope, P. C. H. Martens, S. Régnier Evolution on the photosphere: magnetic and velocity fields 3D coronal magnetic fields.
Aug 16, 2004 Coronal loops formed by separator reconnection: The birth & life of AR9574 Dana Longcope Montana State University.
RHESSI OBSERVATIONS OF FLARE FOOTPOINTS AND RIBBONS H. Hudson and M. Fivian (SSL/UCB)
Nonlinear Force Free Field Models for AR J.McTiernan, H.Hudson (SSL/UCB) T.Metcalf (LMSAL)
Solar Activities and Halloween Storms Ahmed Hady Astronomy Department Cairo University, Egypt.
POSTER TEMPLATE BY: Solar Flare and CME Prediction From Characteristics of 1075 Solar Cycle 23 Active Regions Determined Using.
The May 1,1998 and May 12, 1997 MURI events George H. Fisher UC Berkeley.
Study of magnetic helicity in solar active regions: For a better understanding of solar flares Sung-Hong Park Center for Solar-Terrestrial Research New.
SDO/AIA science plan: prioritization and implementation: Five Objectives in 10 steps [C1]1 I: C1/M8/C10 Transients: Drivers & Destabilization Chair(s):
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
EUV vs. B-field Comparisons Yingna Su Smithsonian Astrophysical Observatory Coauthours: Leon Golub, Aad Van Ballegooijen, Maurice Gros. HMI/AIA Science.
The May 1997 and May 1998 MURI events George H. Fisher UC Berkeley.
Sept. 13, 2007 CORONAL HEATING (Space Climate School, Saariselka, March, 2009) Eric Priest (St Andrews)
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
Transition Region And Coronal Explorer Observes three-dimensional magnetic structures in the Photosphere Defines the geometry and dynamics of the Transition.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
Quick changes of photospheric magnetic field during flare-associated surges Leping Li, Huadong Chen, Suli Ma, Yunchun Jiang National Astronomical Observatory/Yunnan.
Solar Flare Physics B.V. Somov Solar Physics Department Astronomical Institute Moscow State University My friend Eric.
Probing Energy Release of Solar Flares M. Prijatelj Carnegie Mellon University Advisors: B. Chen, P. Jibben (SAO)
Calculating Magnetic Energy in Active Regions Using Coronal Loops for AR and AR Presentation by, Joseph B. Jensen.
SLIDE SHOW 3 B changes due to transport + diffusion III -- * * magnetic Reynold number INDUCTION EQUATION B moves with plasma / diffuses through it.
Flare Energy Build-Up in a Decaying Active Region Near a Coronal Hole Yingna Su Smithsonian Astrophysical Observatory Collaborators: A. A. van Ballegooijen,
Measurement of the Reconnection Rate in Solar Flares H. Isobe 2004/12/6 Taiyo-Zasshikai.
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
Pre-flare activity of M1.2 flare 김수진 1,2, 문용재 1, 김연한 1, 박영득 1, 김갑성 2 1. Korea Astronomy and Space Science Institute 2. Kyung Hee University.
ASAI Ayumi Kwasan Observatory, Kyoto University July 12, Evolution of Flare Ribbons and Energy Release.
Analysis Magnetic Reconnection in Solar Flares: the Importance of Spines and Separators Angela Des Jardins 1, Richard Canfield 1, Dana Longcope 1, Emily.
1 The Astrophysical Journal, 623:L53–L56, 2005 April 10 MAGNETIC FREE ENERGY IN NOAA ACTIVE REGION ON 2003 OCTOBER 29 Thomas R. Metcalf 1,, K. D.
II. MAGNETOHYDRODYNAMICS (Space Climate School, Lapland, March, 2009) Eric Priest (St Andrews)
Evolution of Flare Ribbons and Energy Release Rate Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, and Kazunari SHIBATA 1 1:Kwasan.
Winter Sun. Новые направления в физике больших солнечных вспышек С.И. Безродных, Л.С. Леденцов, Б.В. Сомов Отдел физики Солнца ISR, Febr 8, 2009 My friend.
Evolution of Ha Flare Kernels and Energy Release
Direct Spatial Association of an X-Ray Flare with the Eruption of a Solar Quiescent Filament Gordon D. Holman and Adi Foord (2015) Solar Seminar on July.
Evolutionary Characteristics of Magnetic Helicity Injection in Active Regions Hyewon Jeong and Jongchul Chae Seoul National University, Korea 2. Data and.
Flare Ribbon Expansion and Energy Release Ayumi ASAI Kwasan and Hida Observatories, Kyoto University Explosive Phenomena in Magnetized Plasma – New Development.
The Helioseismic and Magnetic Imager (HMI) on NASA’s Solar Dynamics Observatory (SDO) has continuously measured the vector magnetic field, intensity, and.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
A Method for Solving 180 Degree Ambiguity in Observed Solar Transverse Magnetic Field Huaning Wang National Astronomical Observatories Chinese Academy.
The Sun. The Sun.  Is located in the outer bands of our Galaxy  Is the center of our Solar System  Is a STAR!!!  Rotation: once in about 25 days 
Evolution of Flare Ribbons and Energy Release Ayumi ASAI 1, Takaaki YOKOYAMA 2, Masumi SHIMOJO 3, Satoshi MASUDA 4, Hiroki KUROKAWA 1, and Kazunari SHIBATA.
Evolution of Flare Ribbons and Energy Release Ayumi Asai1,
Magnetic Topology of the 29 October 2003 X10 Flare
Evolution of Flare Ribbons and Energy Release
Evolution of Flare Ribbons and Energy Release Ayumi Asai (浅井 歩)1,
Evolution of Flare Ribbons and Energy Release
Introduction to Space Weather
Evolution of Ha Flare Kernels and Energy Release
Preflare State Rust et al. (1994) 太陽雑誌会.
Flare Ribbon Expansion and Energy Release
Evolution of Flare Ribbons and Energy Release
CORONAL MASS EJECTIONS
Presentation transcript:

О проблеме прогноза больших солнечных вспышек Б.В. Сомов Московский Государственный Университет им. М.В. Ломоносова Государственный Астрономический Институт им. П.К. Штернберга ИКИ РАН, 7-я конф. «Физика плазмы в солнечной системе» 6-10 февраля 2012 г.

Прогноз больших вспышек - проблема не только научная, но и практическая, прикладная

AFOSR CONTRACTS F C-0004 AND F C-0019 K. D. LEKA, G. BARNES, T. R. METCALF, D. DELLA-ROSE, E. K. SCHUMER, D. LONGCOPE Physics-based prediction for solar flares based on the observed magnetic fields in active regions Analysis of Photospheric Magnetic Fields - Time Series Coronal Magnetic Fields store the energy available for release in flares GAISH 2011

“Lots of data, lots of potential, lots of work to do.” “Magnetic free energy determined for five ARs as a function of flare productivity. Error bars reflect both uncertainties in the data and possible invalid assumptions used with the magnetic virial theorem.” GAISH 2011 Главные недостатки современного прогноза 1.Малая достоверность 2.Слабая дифференцируемость, информативность Причина – недостаточное использование физических представлений о механизме вспышки K.D. Leka : Thanks to V.N. Ishkov

“…В прошлый раз? …” Много раз докладывались и обсуждались : Физика солнечных вспышек Физика солнечных вспышек Топологические модели АО Топологические модели АО Топологический триггер вспышек Топологический триггер вспышек

The Principle of the Classic Topological Model ► The separatrices cross at the separator X above the plane Q of effective magnetic charges ► The separator separates the interacting magnetic fluxes by the separatrices

The 1B/M4 flare on 1980 November 5 The 1B/M4 flare on 1980 November 5 My first flare ► Soft and hard X-ray images obtained by HXIS/SMM at 22:33 UT

Topological Portrait ► The topologically important magnetic field lines in the plane Q of the effective magnetic sources The active region AR 2776 where the flare on 1980 November 5 occurred Gorbachev, V.S. and Somov, B.V., Adv. Space Res., 10, No. 9, 105, 1990

The first practical use: Soft X-ray Sigmoid ► The S -shaped large-scale structure is not necessary to be a non-potential field ► It can be interpreted in terms of a topological model for potential field Somov, B.V., Plasma Astrophysics, Part II, Reconnection and Flares, Springer, 2006

Advanced Topological Model for the Bastille-day Flare ► The SOHO MDI magnetogram, July 14, 2000, the active region NOAA 9077 ► Model magnetogram with 5 effective sources of magnetic field (the Monkey model)

Topological portrait and the field lines forming the separatrices

► Location of energy source in the flare ► Locations and shapes of the chromospheric ribbons predicted by the topological models ► The TRACE image of the flare loops and ribbons at 171 A Somov B.V., Oreshina I.V., Lubimov G.P., Astronomy Reports 48, 246, 2004

► Topological model allows to find position of energy source, to calculate the magnetic flux reconnected at the separator and the electric field E ~ 30 V/cm Somov B.V., Oreshina I.V., Lubimov G.P., Astronomy Reports, 48, 246, 2004

► Topological model allows us to investigate the structure of large-scale magnetic field ► Observed large-scale dynamics of flares is determined by fast magnetic reconnection

Тopological Trigger of Large Eruptive Solar Flares Somov B.V., Astronomy Lett., 2008, 34, 635 Somov B.V., Asian Journal of Physics, 2008, 17, 421 Оreshina I.V., Somov B.V., Astronomy Lett., 2009, 35, 207

Topological Trigger ► Coronal null X c quickly moves along the separator and switches back the longitudinal field Slow rapid Slow evolution of magnetic sources leads to a rapid change of the coronal field topology Gorbachev, Kel’ner, Somov, Shvarts, Soviet Astron., 32, 308, 1988

Longitudinal Magnetic Field ► The work has to be done to compress the longitudinal field into current layer ► A tearing mode caused by compressibility becomes suppressed if the longitudinal field is strong ► The longitudinal field decreases reconnection rate “…This is not the whole story…”

Reconnection and Topological Trigger ► Reconnection changes a topology of field lines (step by step) but conserves the global topology of the field in an active region ► Topological trigger is a quick rearrangement of global topology Topological trigger Reconnection in action

Structure of magnetic field in the corona before a trigger λ z (X1) <0 λ z (X2) >0

Change of the magnetic field structure in the beginning of trigger λ z (X1) >0 λ z (X2) >0

Final stage of trigger λ z (X1) <0 λ z (X2) <0

Criterion for the sudden appearance of magnetic null at the separator in the corona I sep = sign ( λ z (X1) · λ z (X2) ) > 0, where X1 и X2 are the null points at the separator footpoints. Oreshina I.V., Somov B.V., Astronomy Lett., 35, 207, 2009

Вывод 1 Предложен метод, который позволяет предсказывать появление нулеввых точек в короне на сепараторах, т.е. там, где магнитная энергия накапливается и преобразуется в энергию вспышки.

Вывод 2 Существует параметр, который характеризует величину продольного поля на сепараторе. Этот параметр - собственное значение z в основаниях сепаратора. Чем меньше его величина, тем меньше продольное магнитное поле на сепараторе, тем лучше условия для пересоединения, для вспыщки.

Эволюция АО NOAA 9077 перед Бастильской вспышкой (14 июля 2000 г.)

Модельные магнитограммы АО NOAA 9077 перед Бастильской вспышкой

Топологический портрет АО NOAA 9077 перед Бастильской вспышкой

Расчет продольного поля на сепараторе в АО NOAA 9077 перед Бастильской вспышкой Уменьшение продольного магнитного поля на 12 июля 14 июля восточном сепараторе 12 июля (синяя линия) и 14 июля (красная линия).

Вывод 3 Эволюция АО NOAA 9077 перед Бастильской вспышкой: Нулевых точек в короне не обнаружено. Однако, с точки зрения пересоединения условия в короне улучшились на обоих сепараторах, что и привело к вспышке.

Oreshina A.V., Oreshina I.V., Somov B.V., Astron. Astrophys., in press, 2012 Geoeffective flares on 2003 November 18 ► GOES 12 flux in A band. ► The flares in AR NOAA are marked in gray.

AR NOAA MDI / SOHO magnetogram obtained on 2003 November 18 at 00:00 UT. The white (black) thick line are 200 G (-200 G) levels.

Topological portrait of AR NOAA Topological portrait of AR NOAA on 2003 November 18 at 00:00 UT Solid curves are the intersections of the ceparatrices with the source plane. X1, … X4 are the zeroth points of magnetic field, the footpoints of separators.

Evolution of magnetic field topology Maximum values of magnetic field at both separators. The two largest flares occurred near the deepest minimum of magnetic field at the both separators.

Topologically Critical State ► Even minor changes in the magneric-source characteristics can lead to drastic changes in the topology of large-scale magnetic field. ► AR NOAA on 2003 November 18 was very close to the Topologically Critical State at 08:00 UT.

Некоторые практические вопросы

Необходимо помнить ► ► Инструментальная поляризация перемешивает продольное и поперечное состояния ► ► Природу не обмануть Нужен хороший современный магнитограф Обработка информации и прогноз вспышек в режиме реального времени

Winter Sun Спасибо за внимание