计算机学院 计算感知 Support Vector Machines. 2 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Perceptron Revisited: Linear Separators Binary classification.

Slides:



Advertisements
Similar presentations
Introduction to Support Vector Machines (SVM)
Advertisements

Support Vector Machines
Lecture 9 Support Vector Machines
ECG Signal processing (2)
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
PrasadL18SVM1 Support Vector Machines Adapted from Lectures by Raymond Mooney (UT Austin)
Support Vector Machine & Its Applications Abhishek Sharma Dept. of EEE BIT Mesra Aug 16, 2010 Course: Neural Network Professor: Dr. B.M. Karan Semester.
S UPPORT V ECTOR M ACHINES Jianping Fan Dept of Computer Science UNC-Charlotte.
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
SVM - Support Vector Machines A new classification method for both linear and nonlinear data It uses a nonlinear mapping to transform the original training.
An Introduction of Support Vector Machine

An Introduction of Support Vector Machine
SVM—Support Vector Machines
Support vector machine
Machine learning continued Image source:
CSCI 347 / CS 4206: Data Mining Module 07: Implementations Topic 03: Linear Models.
Groundwater 3D Geological Modeling: Solving as Classification Problem with Support Vector Machine A. Smirnoff, E. Boisvert, S. J.Paradis Earth Sciences.
1 Machine Learning Support Vector Machines. 2 Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes.
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Support Vector Machines (SVMs) Chapter 5 (Duda et al.)
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class.
Support Vector Classification (Linearly Separable Case, Primal) The hyperplanethat solves the minimization problem: realizes the maximal margin hyperplane.
Support Vector Machines Kernel Machines
Classification Problem 2-Category Linearly Separable Case A- A+ Malignant Benign.
Support Vector Machines
2806 Neural Computation Support Vector Machines Lecture Ari Visa.
Lecture 10: Support Vector Machines
Mehdi Ghayoumi MSB rm 132 Ofc hr: Thur, a Machine Learning.
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
Ch. Eick: Support Vector Machines: The Main Ideas Reading Material Support Vector Machines: 1.Textbook 2. First 3 columns of Smola/Schönkopf article on.
CSE 4705 Artificial Intelligence
Support Vector Machine & Image Classification Applications
CS 8751 ML & KDDSupport Vector Machines1 Support Vector Machines (SVMs) Learning mechanism based on linear programming Chooses a separating plane based.
INTRODUCTION TO ARTIFICIAL INTELLIGENCE Massimo Poesio LECTURE: Support Vector Machines.
SVM Support Vector Machines Presented by: Anas Assiri Supervisor Prof. Dr. Mohamed Batouche.
Machine Learning in Ad-hoc IR. Machine Learning for ad hoc IR We’ve looked at methods for ranking documents in IR using factors like –Cosine similarity,
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
Classifiers Given a feature representation for images, how do we learn a model for distinguishing features from different classes? Zebra Non-zebra Decision.
Kernels Usman Roshan CS 675 Machine Learning. Feature space representation Consider two classes shown below Data cannot be separated by a hyperplane.
Machine Learning Weak 4 Lecture 2. Hand in Data It is online Only around 6000 images!!! Deadline is one week. Next Thursday lecture will be only one hour.
CS 478 – Tools for Machine Learning and Data Mining SVM.
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Support Vector Machines Podpůrné vektorové stroje Babak Mahdian, June 2009.
Support vector machine LING 572 Fei Xia Week 8: 2/23/2010 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A 1.
1 New Horizon in Machine Learning — Support Vector Machine for non-Parametric Learning Zhao Lu, Ph.D. Associate Professor Department of Electrical Engineering,
Support Vector Machines Tao Department of computer science University of Illinois.
Support Vector Machines. Notation Assume a binary classification problem. –Instances are represented by vector x   n. –Training examples: x = (x 1,
Text Classification using Support Vector Machine Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata.
6.S093 Visual Recognition through Machine Learning Competition Image by kirkh.deviantart.com Joseph Lim and Aditya Khosla Acknowledgment: Many slides from.
Support Vector Machines Reading: Ben-Hur and Weston, “A User’s Guide to Support Vector Machines” (linked from class web page)
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
Kernel Methods: Support Vector Machines Maximum Margin Classifiers and Support Vector Machines.
Support Vector Machine: An Introduction. (C) by Yu Hen Hu 2 Linear Hyper-plane Classifier For x in the side of o : w T x + b  0; d = +1; For.
An Introduction of Support Vector Machine In part from of Jinwei Gu.
Roughly overview of Support vector machines Reference: 1.Support vector machines and machine learning on documents. Christopher D. Manning, Prabhakar Raghavan.
Support Vector Machines Reading: Textbook, Chapter 5 Ben-Hur and Weston, A User’s Guide to Support Vector Machines (linked from class web page)
An Introduction of Support Vector Machine Courtesy of Jinwei Gu.
Support Vector Machine & Its Applications. Overview Intro. to Support Vector Machines (SVM) Properties of SVM Applications  Gene Expression Data Classification.
Support Vector Machine Slides from Andrew Moore and Mingyue Tan.
Support Vector Machine
Support Vector Machines
Support Vector Machines
Support Vector Machines
Support Vector Machines Introduction to Data Mining, 2nd Edition by
Support Vector Machines
Support Vector Machine
Support Vector Machines Kernels
Presentation transcript:

计算机学院 计算感知 Support Vector Machines

2 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b = 0 w T x + b < 0 w T x + b > 0 f(x) = sign(w T x + b)

3 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Linear Separators Which of the linear separators is optimal?

4 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Classification Margin Distance from example x i to the separator is Examples closest to the hyperplane are support vectors. Margin ρ of the separator is the distance between support vectors. r ρ

5 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Maximum Margin Classification Maximizing the margin is good according to intuition and PAC theory. Implies that only support vectors matter; other training examples are ignorable.

6 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Linear SVM Mathematically Let training set {(x i, y i )} i=1..n, x i  R d, y i  {-1, 1} be separated by a hyperplane with margin ρ. Then for each training example (x i, y i ): For every support vector x s the above inequality is an equality. After rescaling w and b by ρ/2 in the equality, we obtain that distance between each x s and the hyperplane is Then the margin can be expressed through (rescaled) w and b as: w T x i + b ≤ - ρ/2 if y i = -1 w T x i + b ≥ ρ/2 if y i = 1 y i (w T x i + b) ≥ ρ/2 

7 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Linear SVMs Mathematically (cont.) Then we can formulate the quadratic optimization problem: Which can be reformulated as: Find w and b such that is maximized and for all (x i, y i ), i=1..n : y i (w T x i + b) ≥ 1 Find w and b such that Φ(w) = ||w|| 2 =w T w is minimized and for all (x i, y i ), i=1..n : y i (w T x i + b) ≥ 1

8 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Solving the Optimization Problem Need to optimize a quadratic function subject to linear constraints. Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist. The solution involves constructing a dual problem where a Lagrange multiplier α i is associated with every inequality constraint in the primal (original) problem: Find w and b such that Φ(w) =w T w is minimized and for all (x i, y i ), i=1..n : y i (w T x i + b) ≥ 1 Find α 1 …α n such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) α i ≥ 0 for all α i

9 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 The Optimization Problem Solution Given a solution α 1 …α n to the dual problem, solution to the primal is: Each non-zero α i indicates that corresponding x i is a support vector. Then the classifying function is (note that we don’t need w explicitly): Notice that it relies on an inner product between the test point x and the support vectors x i – we will return to this later. Also keep in mind that solving the optimization problem involved computing the inner products x i T x j between all training points. w = Σ α i y i x i b = y k - Σ α i y i x i T x k for any α k > 0 f(x) = Σ α i y i x i T x + b

10 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Soft Margin Classification What if the training set is not linearly separable? Slack variables ξ i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft. ξiξi ξiξi

11 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Soft Margin Classification Mathematically The old formulation: Modified formulation incorporates slack variables: Parameter C can be viewed as a way to control overfitting: it “trades off” the relative importance of maximizing the margin and fitting the training data. Find w and b such that Φ(w) =w T w is minimized and for all (x i,y i ), i=1..n : y i (w T x i + b) ≥ 1 Find w and b such that Φ(w) =w T w + C Σ ξ i is minimized and for all (x i,y i ), i=1..n : y i (w T x i + b) ≥ 1 – ξ i,, ξ i ≥ 0

12 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Soft Margin Classification – Solution Dual problem is identical to separable case (would not be identical if the 2- norm penalty for slack variables CΣξ i 2 was used in primal objective, we would need additional Lagrange multipliers for slack variables): Again, x i with non-zero α i will be support vectors. Solution to the dual problem is: Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) 0 ≤ α i ≤ C for all α i w = Σ α i y i x i b= y k (1- ξ k ) - Σ α i y i x i T x k for any k s.t. α k >0 f(x) = Σ α i y i x i T x + b Again, we don’t need to compute w explicitly for classification:

13 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Linear SVMs: Overview The classifier is a separating hyperplane. Most “important” training points are support vectors; they define the hyperplane. Quadratic optimization algorithms can identify which training points x i are support vectors with non-zero Lagrangian multipliers α i. Both in the dual formulation of the problem and in the solution training points appear only inside inner products: Find α 1 …α N such that Q( α ) = Σ α i - ½ ΣΣ α i α j y i y j x i T x j is maximized and (1) Σ α i y i = 0 (2) 0 ≤ α i ≤ C for all α i f(x) = Σ α i y i x i T x + b

14 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Non-linear SVMs Datasets that are linearly separable with some noise work out great: But what are we going to do if the dataset is just too hard? How about… mapping data to a higher-dimensional space: x2x2 x x x

15 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Non-linear SVMs: Feature spaces General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable: Φ: x → φ(x)

16 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 The “Kernel Trick” The linear classifier relies on inner product between vectors K(x i,x j )=x i T x j If every datapoint is mapped into high-dimensional space via some transformation Φ: x → φ(x), the inner product becomes: K(x i,x j )= φ(x i ) T φ(x j ) A kernel function is a function that is eqiuvalent to an inner product in some feature space. Example: 2-dimensional vectors x=[x 1 x 2 ]; let K(x i,x j )=(1 + x i T x j ) 2, Need to show that K(x i,x j )= φ(x i ) T φ(x j ): K(x i,x j )=(1 + x i T x j ) 2, = 1+ x i1 2 x j x i1 x j1 x i2 x j2 + x i2 2 x j x i1 x j1 + 2x i2 x j2 = = [1 x i1 2 √2 x i1 x i2 x i2 2 √2x i1 √2x i2 ] T [1 x j1 2 √2 x j1 x j2 x j2 2 √2x j1 √2x j2 ] = = φ(x i ) T φ(x j ), where φ(x) = [1 x 1 2 √2 x 1 x 2 x 2 2 √2x 1 √2x 2 ] Thus, a kernel function implicitly maps data to a high-dimensional space (without the need to compute each φ(x) explicitly).

17 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 What Functions are Kernels? For some functions K(x i,x j ) checking that K(x i,x j )= φ(x i ) T φ(x j ) can be cumbersome. Mercer’s theorem: Every semi-positive definite symmetric function is a kernel Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix: K(x1,x1)K(x1,x1)K(x1,x2)K(x1,x2)K(x1,x3)K(x1,x3)…K(x1,xn)K(x1,xn) K(x2,x1)K(x2,x1)K(x2,x2)K(x2,x2)K(x2,x3)K(x2,x3)K(x2,xn)K(x2,xn) …………… K(xn,x1)K(xn,x1)K(xn,x2)K(xn,x2)K(xn,x3)K(xn,x3)…K(xn,xn)K(xn,xn) K=

18 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Examples of Kernel Functions Linear: K(x i,x j )= x i T x j –Mapping Φ: x → φ(x), where φ(x) is x itself Polynomial of power p: K(x i,x j )= (1+ x i T x j ) p –Mapping Φ: x → φ(x), where φ(x) has dimensions Gaussian (radial-basis function): K(x i,x j ) = –Mapping Φ: x → φ(x), where φ(x) is infinite-dimensional: every point is mapped to a function (a Gaussian); combination of functions for support vectors is the separator. Higher-dimensional space still has intrinsic dimensionality d (the mapping is not onto), but linear separators in it correspond to non-linear separators in original space.

19 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Non-linear SVMs Mathematically Dual problem formulation: The solution is: Optimization techniques for finding α i ’s remain the same! Find α 1 …α n such that Q(α) = Σ α i - ½ ΣΣ α i α j y i y j K(x i, x j ) is maximized and (1) Σ α i y i = 0 (2) α i ≥ 0 for all α i f(x) = Σ α i y i K(x i, x j )+ b

20 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 SVM applications SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s. SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data. SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data. SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. ’97], principal component analysis [Schölkopf et al. ’99], etc. Most popular optimization algorithms for SVMs use decomposition to hill- climb over a subset of α i ’s at a time, e.g. SMO [Platt ’99] and [Joachims ’99] Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

计算机学院 计算感知 Multiple Kernel Learning

22 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 The final decision function in primal

23 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 A quadratic regularization on d m

24 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Joint convex

25 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Optimization Strategy Iteratively update the linear combination coefficient d and the dual variable (1) Fix d, update (2) Fix, update d

26 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 The final decision function in dual

27 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Structural SVM

计算机学院 计算感知 Problem

29 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Primal Formulation of Structural SVM

30 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Dual Problem of Structural SVM

31 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Algorithm

32 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Linear Structural SVM

计算机学院 计算感知 Structural Mutliple Kernel Learning

34 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Linear combination of output functions

35 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Optimization Problem

36 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Convex Optimization Problem

37 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Solution

38 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Latent Structural SVM

39 University of Texas at Austin Machine Learning Group 计算感知 计算机学院

40 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Algorithm of Latent Structural SVM Non-convex problem

41 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Applications of Latent Structural SVM Object Recognition

42 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Applications of Latent Structural SVM Group Activity Recognition

43 University of Texas at Austin Machine Learning Group 计算感知 计算机学院

44 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Applications of Latent Structural SVM Image Annotation

45 University of Texas at Austin Machine Learning Group 计算感知 计算机学院

46 University of Texas at Austin Machine Learning Group 计算感知 计算机学院

47 University of Texas at Austin Machine Learning Group 计算感知 计算机学院

48 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Applications of Latent Structural SVM Pose Estimation

49 University of Texas at Austin Machine Learning Group 计算感知 计算机学院

50 University of Texas at Austin Machine Learning Group 计算感知 计算机学院