Particle Physics Nikos Konstantinidis. 2 3 Practicalities (I) Contact details Contact details My office: D16, 1 st floor Physics, UCLMy office: D16,

Slides:



Advertisements
Similar presentations
P308 – Particle Interactions Dr David Cussans Mott Lecture Theatre Monday 11:10am Tuesday,Wednesday: 10am.
Advertisements

Announcements 10/3 Today: Problems 5.11, 5.12, 5.13 Friday: Problems 6.1, 6.2, 6.4 Monday: Read 6E - 6G Problem 6.4 says scalar couplings.
P Spring 2003 L2Richard Kass Relativistic Kinematics In HEP the particles (e.g. protons, pions, electrons) we are concerned with are usually moving.
Feynman Diagrams Feynman diagrams are pictorial representations of
Jørgen Beck Hansen Particle Physics Basic concepts Particle Physics.
Announcements 11/14 Today: 9.6, 9.8 Friday: 10A – 10E Monday: 10F – 10H 9.6 Only do differential cross-section See problem 7.7 to do most of the work for.
Lecture 10: Standard Model Lagrangian The Standard Model Lagrangian is obtained by imposing three local gauge invariances on the quark and lepton field.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1 W 1 +  2 W 2 +  3 W 3.

P461 - particles VII1 Glashow-Weinberg-Salam Model EM and weak forces mix…or just EW force. Before mixing Bosons are massless: Group Boson Coupling Quantum.
January 16, 2001Physics 8411 Introduction to Feynman Diagrams and Dynamics of Interactions All known interactions can be described in terms of forces forces:
Symmetries By Dong Xue Physics & Astronomy University of South Carolina.
Fundamental principles of particle physics

P461 - nuclear decays1 General Comments on Decays Use Fermi Golden rule (from perturbation theory) rate proportional to cross section or 1/lifetime the.
Schlüsselexperimente der Elementarteilchenphysik:.

Feynman Diagrams.
P461 - particles VIII1 Neutrino Physics Three “active” neutrino flavors (from Z width measurements). Mass limit from beta decay Probably have non-zero.
Quantum Electrodynamics Dirac Equation : spin 1/2.
Elementary particles atom Hadrons Leptons Baryons Mesons Nucleons
Handout 1 : Introduction
Lecture 5: Electron Scattering, continued... 18/9/2003 1
Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy SCHEDULE 26-Jan pm LRB Intro lecture 28-Jan pm LRBProblem solving.
Particle Physics J4 Leptons and the standard model.
10 lectures. classical physics: a physical system is given by the functions of the coordinates and of the associated momenta – 2.
P Spring 2003 L12Richard Kass The properties of the Z 0 For about ten years the Z 0 was studied in great detail at two accelerator complexes: LEP.
Electroweak Theory Mr. Gabriel Pendas Dr. Susan Blessing.
Announcements Homework returned now 9/19 Switching to more lecture-style class starting today Good luck on me getting powerpoint lectures ready every day.
1 FK7003 Elementary Particle Physics David Milstead A4:1021 tel: /
1 Conservation Kihyeon Cho April 5, 2011 HEP. What is the world made of? What holds the world together? Where did we come from? the smallest things in.
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Frontiers of particle physics II
P Spring 2003 L5 Isospin Richard Kass
Properties conserved in Strong and EM interactions
M. Cobal, PIF 2003 Resonances - If cross section for muon pairs is plotted one find the 1/s dependence -In the hadronic final state this trend is broken.
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
Fundamental principles of particle physics G.Ross, CERN, July08.

The inclusion of fermions – J=1/2 particles
M. Cobal, PIF 2006/7 Feynmann Diagrams. M. Cobal, PIF 2006/7 Feynman Diagrams 
Physics 842, February 2006 Bogdan Popescu Presentation based on “Introduction to Elementary Particles” by David Griffiths WEAK INTERACTION (1)
Prof. M.A. Thomson Michaelmas Particle Physics Michaelmas Term 2011 Prof Mark Thomson Handout 3 : Interaction by Particle Exchange and QED X X.
Non-Linear Effects in Strong EM Field Alexander Titov Bogoliubov Lab. of Theoretical Physics, JINR, Dubna International.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Thomson (Canelli/Serra) KTII Handout from Prof. Mark Thomson’s lectures Adapted to UZH by Prof. Canelli and Prof. Serra Handout 1 : Introduction.
Feynman Diagrams Topic 7.3.
Higgs in the Large Hadron Collider Joe Mitchell Advisor: Dr. Chung Kao.
Lecture 2 - Feynman Diagrams & Experimental Measurements
Lecture 4 – Quantum Electrodynamics (QED)
Nuclear Physics : Origin of elements
Elementary Particle Physics
From Lagrangian Density to Observable
Handout 3 : Interaction by Particle Exchange and QED
Chapter V Interacting Fields Lecture 1 Books Recommended:
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1W1+  2W2 +  3W3.
Construction of a relativistic field theory
Lecture 10: Standard Model Lagrangian
Handout 9 : The Weak Interaction and V-A
By: Christopher Hayes November 29, 2012
Section VI - Weak Interactions
Announcements Exam Details: Today: Problems 6.6, 6.7
Scattering in QM Consider a beam of particles scattering in potential V(r): NOTE: natural units The scattering rate is characterized by the interaction.
Particle Physics Part 1 -James Joyce Contents: Particle Accelerators
Introduction to particle physics Part IV
Lecture 2: Invariants, cross-section, Feynman diagrams
It means anything not quadratic in fields and derivatives.
Lecture 12 Halzen & Martin Chapter 6
Examples of QED Processes
Presentation transcript:

Particle Physics Nikos Konstantinidis

2

3 Practicalities (I) Contact details Contact details My office: D16, 1 st floor Physics, UCLMy office: D16, 1 st floor Physics, UCL My Web page: page: Office hours for the course (this term) Office hours for the course (this term) Tuesday 13h00 – 14h00Tuesday 13h00 – 14h00 Friday 12h30 – 13h30Friday 12h30 – 13h30 Problem sheets Problem sheets To you at week 1, 3, 5, 7, 9To you at week 1, 3, 5, 7, 9 Back to me one week laterBack to me one week later Back to you (marked) one week laterBack to you (marked) one week later

4 Practicalities (II) Textbooks Textbooks I recommend (available for £23 – ask me or Dr. Moores)I recommend (available for £23 – ask me or Dr. Moores) Griffiths Introduction to Elementary Particles Griffiths Introduction to Elementary Particles AlternativesAlternatives Halzen & Martin Quarks & Leptons Halzen & Martin Quarks & Leptons Martin & Shaw Particle Physics Martin & Shaw Particle Physics Perkins Introduction to High Energy Physics Perkins Introduction to High Energy Physics General reading General reading Greene The Elegant UniverseGreene The Elegant Universe

5 Course Outline 1. Introduction (w1) 2. Symmetries and conservation laws (w2) 3. The Dirac equation (w3) 4. Electromagnetic interactions (w4,5) 5. Strong interactions (w6,7) 6. Weak interactions (w8,9) 7. The electroweak theory and beyond (w10,11)

6 Week 1 – Outline Introduction: elementary particles and forces Introduction: elementary particles and forces Natural units, four-vector notation Natural units, four-vector notation Study of decays and reactions Study of decays and reactions Feynman diagrams/rules & first calculations Feynman diagrams/rules & first calculations

7 The matter particles All matter particles (a) have spin ½; (b) are described by the same equation (Diracs); (c) have antiparticles All matter particles (a) have spin ½; (b) are described by the same equation (Diracs); (c) have antiparticles Particles of same type but different families are identical, except for their mass: Particles of same type but different families are identical, except for their mass: m e = 0.511MeV m =105.7MeV m =1777MeV Why three families? Why they differ in mass? Origin of mass? Why three families? Why they differ in mass? Origin of mass? Elementary point-like (… but have mass/charge/spin!!! ) Elementary point-like (… but have mass/charge/spin!!! )

8 The force particles All force particles have spin 1 (except for the graviton, still undiscovered, expected with spin 2) All force particles have spin 1 (except for the graviton, still undiscovered, expected with spin 2) Many similarities but also major differences: Many similarities but also major differences: m = 0 vs. m W,Z ~100GeV Unlike photon, strong/weak mediators carry their own charge The SM provides a unified treatment of EM and Weak forces (and implies the unification of Strong/EM/Weak forces); but requires the Higgs mechanism ( the Higgs particle, still undiscovered!). The SM provides a unified treatment of EM and Weak forces (and implies the unification of Strong/EM/Weak forces); but requires the Higgs mechanism ( the Higgs particle, still undiscovered!).

9 SI units not intuitive in Particle Physics; e.g. SI units not intuitive in Particle Physics; e.g. Mass of the proton ~1.7× kgMass of the proton ~1.7× kg Max. momentum of LEP ~5.5× kgmsecMax. momentum of LEP ~5.5× kgmsec Speed of muon in pion decay (at rest) ~8.1×10 7 msecSpeed of muon in pion decay (at rest) ~8.1×10 7 msec More practical/intuitive: ħ = c =1; this means energy, momentum, mass have same units More practical/intuitive: ħ = c =1; this means energy, momentum, mass have same units E 2 = p 2 c 2 + m 2 c 4 E 2 = p 2 + m 2E 2 = p 2 c 2 + m 2 c 4 E 2 = p 2 + m 2 E.g. m p =0.938GeV, max. p LEP =104.5GeV, v =0.27E.g. m p =0.938GeV, max. p LEP =104.5GeV, v =0.27 Also:Also: Time and length have units of inverse energy! Time and length have units of inverse energy! 1GeV -1 =1.973× m1GeV -1 =6.582× sec1GeV -1 =1.973× m1GeV -1 =6.582× sec Natural Units

10

11 4-vector notation (I) 4-vector: An object that transforms like x between inertial frames E.g. Invariant: A quantity that stays unchanged in all inertial frames E.g. 4-vector scalar product: 4-vector length: 4-vector length: Length can be: >0timelike <0 spacelike =0lightlike 4-vector Lorentz Transformations

12 4-vector notation (II) Define matrix g: g 00 =1, g 11 =g 22 =g 33 =-1 (all others 0) Define matrix g: g 00 =1, g 11 =g 22 =g 33 =-1 (all others 0) Also, in addition to the standard 4-v notation (contravariant form: indices up), define covariant form of 4-v (indices down): Also, in addition to the standard 4-v notation (contravariant form: indices up), define covariant form of 4-v (indices down): Then the 4-v scalar product takes the tidy form: Then the 4-v scalar product takes the tidy form: An unusual 4-v is the four-derivative: An unusual 4-v is the four-derivative: So, a is invariant; e.g. the EM continuity equation becomes: So, a is invariant; e.g. the EM continuity equation becomes:

13 What do we study? Particle Decays (A B+C+…) Particle Decays (A B+C+…) Lifetimes, branching ratios etc…Lifetimes, branching ratios etc… Reactions (A+B C+D+…) Reactions (A+B C+D+…) Cross sections, scattering angles etc…Cross sections, scattering angles etc… Bound States Bound States Mass spectra etc…Mass spectra etc…

14

15 Study of Decays ( A B+C+… ) Decay rate : The probability per unit time that a particle decays Decay rate : The probability per unit time that a particle decays Lifetime : The average time it takes to decay (at particles rest frame!) Lifetime : The average time it takes to decay (at particles rest frame!) Usually several decay modes Usually several decay modes Branching ratio BR Branching ratio BR We measure tot (or ) and BRs; we calculate i We measure tot (or ) and BRs; we calculate i

16 as decay width as decay width Unstable particles have no fixed mass due to the uncertainty principle: Unstable particles have no fixed mass due to the uncertainty principle: The Breit-Wigner shape: The Breit-Wigner shape: We are able to measure only one of, of a particle We are able to measure only one of, of a particle ( 1GeV -1 =6.582× sec ) M0M0M0M0 N max 0.5N max

17 Study of reactions ( A+B C+D+… ) Cross section Cross section The effective cross-sectional area that A sees of B (or B of A)The effective cross-sectional area that A sees of B (or B of A) Has dimensions L 2 and is measured in (subdivisions of) barnsHas dimensions L 2 and is measured in (subdivisions of) barns 1b = m 2 1b = m 2 1pb = m 2 Often measure differential cross sections Often measure differential cross sections d /d or d /d(cos )d /d or d /d(cos ) Luminosity L Luminosity L Number of particles crossing per unit area and per unit timeNumber of particles crossing per unit area and per unit time Has dimensions L -2 T -1 ; measured in cm -2 s -1 (10 31 – )Has dimensions L -2 T -1 ; measured in cm -2 s -1 (10 31 – )

18 Study of reactions (contd) Event rate (reactions per unit time) Event rate (reactions per unit time) Ordinarily use integrated Luminosity (in pb -1 ) to get the total number of reactions over a running period Ordinarily use integrated Luminosity (in pb -1 ) to get the total number of reactions over a running period In practice, L measured by the event rate of a reaction whose is well known (e.g. Bhabha scattering at LEP: e + e – e + e – ). Then cross sections of new reactions are extracted by measuring their event rates In practice, L measured by the event rate of a reaction whose is well known (e.g. Bhabha scattering at LEP: e + e – e + e – ). Then cross sections of new reactions are extracted by measuring their event rates

19 Feynman diagrams Feynman diagrams: schematic representations of particle interactions Feynman diagrams: schematic representations of particle interactions They are purely symbolic! Horizontal dimension is (…can be) time (except in Griffiths!) but the other dimension DOES NOT represent particle trajectories! They are purely symbolic! Horizontal dimension is (…can be) time (except in Griffiths!) but the other dimension DOES NOT represent particle trajectories! Particle going backwards in time => antiparticle forward in time Particle going backwards in time => antiparticle forward in time A process A+B C+D is described by all the diagrams that have A,B as input and C,D as output. The overall cross section is the sum of all the individual contributions A process A+B C+D is described by all the diagrams that have A,B as input and C,D as output. The overall cross section is the sum of all the individual contributions Energy/momentum/charge etc are conserved in each vertex Energy/momentum/charge etc are conserved in each vertex Intermediate particles are virtual and are called propagators; The more virtual the propagator, the less likely a reaction to occur Intermediate particles are virtual and are called propagators; The more virtual the propagator, the less likely a reaction to occur Virtual: Virtual:

20 Fermis Golden Rule Calculation of or has two components: Calculation of or has two components: Dynamical info: (Lorentz Invariant) Amplitude (or Matrix Element) MDynamical info: (Lorentz Invariant) Amplitude (or Matrix Element) M Kinematical info: (L.I.) Phase Space (or Density of Final States)Kinematical info: (L.I.) Phase Space (or Density of Final States) FGR for decay rates (1 2+3+…+n) FGR for decay rates (1 2+3+…+n) FGR for cross sections ( …+n) FGR for cross sections ( …+n)

21 Feynman rules to extract M Toy theory: A, B, C spin-less and only ABC vertex 1.Label all incoming/outgoing 4-momenta p 1, p 2,…, p n ; Label internal 4-momenta q 1, q 2 …,q n. 2.Coupling constant: for each vertex, write a factor – ig 3.Propagator: for each internal line write a factor i /(q 2 –m 2 ) 4.E/p conservation: for each vertex write (2) 4 4 (k 1 +k 2 +k 3 ); ks are the 4-momenta at the vertex (+/– if incoming/outgoing) 5.Integration over internal momenta: add 1/(2) 4 d 4 q for each internal line and integrate over all internal momenta 6.Cancel the overall Delta function that is left: (2) 4 4 (p 1 +p 2 –p 3 …–p n ) What remains is:

22 Summary The SM particles & forces [1.1->1.11, 2.1->2.3] The SM particles & forces [1.1->1.11, 2.1->2.3] Natural Units Natural Units Four-vector notation [3.2] Four-vector notation [3.2] Width, lifetime, cross section, luminosity [6.1] Width, lifetime, cross section, luminosity [6.1] Fermis G.R. and phase space for 1+2–>3+4 [6.2] Fermis G.R. and phase space for 1+2–>3+4 [6.2] Mandelstam variables [Exercises 3.22, 3.23] Mandelstam variables [Exercises 3.22, 3.23] -functions [Appendix A]-functions [Appendix A] Feynman Diagrams [2.2] Feynman Diagrams [2.2] Feynman rules for the ABC theory [6.3] Feynman rules for the ABC theory [6.3] d/d for A+B–>A+B [6.5] d/d for A+B–>A+B [6.5] Renormalisation, running coupling consts [6.6, 2.3] Renormalisation, running coupling consts [6.6, 2.3]